Enhanced Sludge Dewatering Performance by a Novel Bioflocculant Conditioning

Article Preview

Abstract:

The characterization and use in sludge dewatering of a novel bioflocculant M-C11 produced by Klebsiella pneumoniae was investigated. The purified M-C11 was composed of 91.20% sugar, 4.61% protein and 3.91% nucleic acids (w/w). Fourier transform infrared (FT-IR) spectroscopy of purified M-C11 confirmed the presence of carboxyl, hydroxyl, methoxyl and amino groups. The sludge resistance to filtration (SRF) decreased remarkably from 11.64×1012 m/kg to 4.66×1012 m/kg under the optimum conditions (pH=6, 3 mL bioflocculant and 4 mL CaCl2 dosage), after being conditioned with bioflocculant M-C11, which was more efficient than inorganic flocculants. Results showed that M-C11 could serve as a substitute for chemical conditioners and a promising alternative to the sludge treatment industries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

659-664

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Tony, Y.Q. Zhao, J.F. Fu and A.M. Tayeb: Chemosphere Vol. 72(2008), p.673.

Google Scholar

[2] H.P. Yuan, X.B. Cheng, S.P. Chen, N.W. Zhu and Z.Y. Zhou: Bioresour. Technol. Vol. 102(2011), p.5659.

Google Scholar

[3] G. Zhen, X. Lu, Y. Li, Y. Zhao, B. Wang, Y. Song, X. Chai, D. Niu and X. Cao: Bioresour. Technol. Vol. 119(2012), p.7.

Google Scholar

[4] Y. Zheng, Z.L. Ye, X.L. Fang, Y.H. Li and W.M. Cai: Bioresour. Technol. Vol. 99(2008), p.7686.

Google Scholar

[5] Z. Li, S. Zhong, H.Y. Lei, R.Y. Chen, Q. Yu and H.Y. Li: Bioresour. Technol. Vol. 100(2009), p.3650.

Google Scholar

[6] S.J. Yuan, M. Sun, G.P. Sheng, Y. Li, W.W. Li, R.S. Yao and H.Q. Yu: Environ. Sci. Technol. Vol. 45(2011), p.1152.

Google Scholar

[7] S. Xia, Z. Zhang, X. Wang, A. Yang, L. Chen, J. Zhao, D. Leonard and N. Jaffrezic-Renault: Bioresour. Technol. Vol. 99(2008), p.6520.

Google Scholar

[8] H. Salehizadeh and S.A. Shojaosadati: Water Res. Vol. 37(2003), p.4231.

Google Scholar

[9] Z. Zhang, S. Xia, J. Zhao and J. Zhang: Colloid Surf. B-Biointerfaces Vol. 75(2010), p.247.

Google Scholar

[10] I.M.C. Lo, K.C.K. Lai and G.H. Chen: Environ. Sci. Technol. Vol. 35(2001), p.4691.

Google Scholar

[11] R. Kurane, K. Hatamochi, T. Kakuno, M. Kiyohara, M. Hirano and Y. Taniguchi: Biosci. Biotechnol. Biochem. Vol. 58(1994), p.428.

Google Scholar

[12] S.S. Adav and D.J. Lee: J. Hazard. Mater. Vol. 154(2008), p.1120.

Google Scholar

[13] M. Raynaud, J. Vaxelaire, J. Olivier, E. Dieudé-Fauvel and J.C. Baudez: Water Res. Vol. 46(2012), p.4448.

DOI: 10.1016/j.watres.2012.05.047

Google Scholar

[14] J.H. Kwon, K.Y. Park, J.H. Park, S.H. Lee and K.H. Ahn: Water Sci. Technol. Vol. 50(2004), p.99.

Google Scholar

[15] B. Guan, J. Yu, H. Fu, M. Guo and X. Xu: Water Res. Vol. 46(2012), p.425.

Google Scholar

[16] G.R. Chang, J.C. Liu and D.J. Lee: Water Res. Vol. 35(2001), p.786.

Google Scholar

[17] P. Prasertsan, W. Dermlim, H. Doelle and J.F. Kennedy: Carbohydr. Polym. Vol. 66(2006), p.289.

Google Scholar

[18] Y. Qi, K.B. Thapa and A.F.A. Hoadley: Chem. Eng. J. Vol. 171(2011), p.373.

Google Scholar