Physiological Response of Pleioblastus fortunei to Mercury Stress and Alleviatory Effects of Exogenous Silicon

Article Preview

Abstract:

A pot experiment was conducted to explore the physiological toxicity of mercury (Hg) and alleviatory effects of exogenous silicon (Si) on Pleioblastus fortunei by the determination of leaf membrane permeability, chlorophyll and soluble protein content, SOD and POD activity, root vigor, net photosynthetic rate. The results indicated that 20 mg/kg Hg2+ treatment for 100 days caused no obvious physiological effect on Pleioblastus fortunei except for root vigor. As the concentration of Hg2+ increased from 20 mg/kg to 500 mg/kg, the degree of physiological injury increased, and 500 mg/kg Hg2+ exhibited significant physiological toxicity to Pleioblastus fortunei. Application of 300 mg/kg Si had no apparent regulatory effect on physiological response of Sasa fortunei in the presence of 20 mg/kg Hg2+, but significantly alleviated the toxicity of 500 mg/kg Hg2+. Si could prohibite the descent of SOD activity and the increase of POD activity caused by high concentration of Hg2+, thus maintain the metabolism balance of active oxygen. Pleioblastus fortunei can be considered as phytoremediation plant and Si to improve resistance of bamboos cultivated in Hg polluted area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-80

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.E.C. (Commission of the European Communities): the economic and social committee and the committee of the regions, COM , (2002) , 179: 35.

Google Scholar

[2] E. Epstein: Proc. Natl. Acad. Sci. U.S.A. Vol. 91 (1994), p.11–17.

Google Scholar

[3] J.F. Ma, K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M: Nature. Vol. 440 (2006), p.688–691.

DOI: 10.1038/nature04590

Google Scholar

[4] M. Patra , N. Bhowmik , B. Bandopadhyay , et al: Environmental and Experimental Botany. Vol. 3 (2004), pp.199-223.

Google Scholar

[5] IwasakiKōzō, M. Peter, F. Marion, et al: Plant Physiol. Vol. 159 (2002), pp.167-173.

Google Scholar

[6] R. Kathryn E, S. Michael: Current opinion in Plant Biology. Vol. 6 (2003), pp.268-272.

Google Scholar

[7] F. Francois, R.B. Wilfried, M. James G, et al: FEMS Microbiology Letters. Vol. 249 (2005), pp.1-6.

Google Scholar

[8] O.L. Reynolds, M.G. Keeping, J.H. Meyer: Ann Appl Biol. Vol. 155(2009), pp.171-186.

Google Scholar

[9] Guo, Qiang, Meng, et al: Bulletin of environmental contamination toxicology. Vol. 91(2013), pp.213-216.

Google Scholar

[10] Lukacova, Zuzana, Svubova, et al: Plant Growth Regulation. Vol. 70(2013), pp.89-103.

Google Scholar

[11] L. Gratani , M.F. Crescente, Varone L, et al: Flora. Vol. 203 (2008), pp.77-84.

Google Scholar

[12] C.J. Atkinson: Biomass and Bioenergy. Vol. 5 (2009), pp.752-759.

Google Scholar

[13] Collin, Blanche; Doelsch, et al: Vol. 20(2013), pp.6482-6495.

Google Scholar

[14] C. Tan, H.D. Yang, S.W. Yu: Plant physiology laboratory manual. (1985).

Google Scholar

[15] Z.L. Zhang: Plant Physiology Experiment Guide. (1997).

Google Scholar

[16] X.K. Wang: Plant physiological and biochemical experiment principle and technology. (2006).

Google Scholar

[17] J.F. Gao: Plant Physiology Experiment Guide. (2006).

Google Scholar

[18] Z.H. Beng, K.Q. Beng, J.J. Hu, et al: Chinese Agricultural Science Bulletin. Vol. 4 (2002), pp.80-83.

Google Scholar

[19] R.S. Dhindsa, P.P. Dhindsa, T.A. Thorpe: Exp Bot. Vol. 32(1981), pp.93-101.

Google Scholar

[20] Bhaduri, M. Anwesha, M.H. Fulekar: Environmental Science and Biotechnology. Vol. 3(2012), pp.55-69.

Google Scholar

[21] A.K. Stobart, W.T. Grifiths , A. Bukhari, et al: Plant Physiol. Vol. 63(1985), p.293 – 298.

Google Scholar

[22] C. Bowler, M. VanMontagu, Q Inze: Annu. Rev . P lant Physiol PlantMol Bio. Vol. 43(1992), pp.83-88.

Google Scholar

[23] Juknys, Romualdas, Vitkauskaite, et al: Central european journal of biology. Vol. 7(2012), pp.299-306.

Google Scholar

[24] G.C. Chen, L. Gan: Agricultural environment protection. Vol. 5 (2000), pp.257-259.

Google Scholar

[25] X. Xiao, Z.X. Zhu, C. Wang, et al : Anhui agricultural science. Vol. 20 (2009), pp.9584-9585.

Google Scholar

[26] S.H. Wei, S.S. Wang, Y.M. Li: Journal of soils and sediments. Vol. 13(2013), pp.1069-1074.

Google Scholar

[27] .J.A. Raven: Biol . Rev . Camb. Philos. Soc. Vol. 58(1981), pp.179-207.

Google Scholar

[28] Y.C. Liang: Pedosphere. Vol. 8(1998), p.289–296.

Google Scholar

[29] Y.C. Liang, J.W. Wong, L. Wei: Chemosphere. Vol. 58(2005), pp.475-483.

Google Scholar

[30] T. Hattoria, S. Inanagaa, H. Arakib. et al: Physiologia Plantarum. Vol. 123 (2005), pp.459-466.

Google Scholar

[31] Karuppanapandian, Thirupathi; Kim, et al: Acta Physiologiae plantarum. Vol. 35(2013), pp.2429-2443.

Google Scholar

[32] Bhaduri, M. Anwesha, M.H. Fulekar: Environmental Science and Biotechnology. Vol. 3(2012), pp.55-69.

Google Scholar

[33] Zhang, S.R. Li, S.Y. Ding, et al: Journal of food agriculture& environment. Vol. 11(2013), pp.814-819.

Google Scholar