[1]
P. L. Sims, J. A. Bradford Carbon dioxide fluxes in a southern plains prairie. Agric For Meteorol, 2001, p.109: 117–134.
DOI: 10.1016/s0168-1923(01)00264-7
Google Scholar
[2]
L. B. Flanagan, L. A. Wever, P. J. Carlson Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Chang Biol, 2002, 8: p.599–615.
DOI: 10.1046/j.1365-2486.2002.00491.x
Google Scholar
[3]
L. K. Xu, D. D. Baldocchi. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric for Meteorol, 2004, 123: p.79–96.
DOI: 10.1016/j.agrformet.2003.10.004
Google Scholar
[4]
Z. Nagy, K. Pinter, S. Czobel. The carbon budget of semi-arid grassland in a wet and dry year in Hungary. Agric Ecosyst Environ, 2007, 121: p.21–29.
Google Scholar
[5]
J. M. Adams, H. Faure, L. Fauredenard. Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 1990, 348: p.711–714.
DOI: 10.1038/348711a0
Google Scholar
[6]
P. L. Sims, P. G. Risser. Grasslands. In: Barbour MG, Billings WD (eds) Northern American terrestrial vegetation, 2nd edn. Cambridge University Press, New York, p.323–356. (2000).
Google Scholar
[7]
J. M. O. Scurlock, D. O. Hall. The global carbon sink: a grassland perspective. Glob Chang Biol , 1998, 4: p.229–233.
Google Scholar
[8]
A. E. Suyker, S. B. Verma Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Chang Biol, 2001, 7: p.279–289.
DOI: 10.1046/j.1365-2486.2001.00407.x
Google Scholar
[9]
A. K. Knapp, P. A. Fay, J. M. Blair. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 2002, 298: p.2202–2205.
DOI: 10.1126/science.1076347
Google Scholar
[10]
J. E. Hunt, F. M . Kelliher, T. M. McSeveny. Long-term carbon exchange in a sparse, seasonally dry tussock grassland. Glob Chang Biol, 2004, 10: p.1785–1800.
DOI: 10.1111/j.1365-2486.2004.00842.x
Google Scholar
[11]
K. A. Novick, P. C. Stoy, G. G. Katul, D. S. Ellsworth. Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia, 2004, 138: p.259–274.
DOI: 10.1007/s00442-003-1388-z
Google Scholar
[12]
J. Ni. Carbon storage in grasslands of China. J Arid Environ, 2002, 50: p.205–218.
Google Scholar
[13]
J. Ni. Forage yield-based carbon storage in grasslands of China. Clim Change, 2004a, 67: p.237–246.
DOI: 10.1007/s10584-004-0070-8
Google Scholar
[14]
Y. D. Pan, J. M. Melillo, A. D. McGuire et al. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecologia, 1998, 114: p.389.
DOI: 10.1007/s004420050462
Google Scholar
[15]
P. Friedlingstein, P. Cox, R. Betts et al. Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. Journal of Climate, 2006, 19: p.3337–3353.
Google Scholar
[16]
E. A. Davidson, D. C. Nepstad, C. Klink et al. Pasture soils as carbon sink. Nature, 1995, 376: p.472–473.
DOI: 10.1038/376472a0
Google Scholar
[17]
Z. Tan, S. Liu, C. A. Johnston. et al. Analysis of ecosystem controls on soil carbon source–sink relationships in the northwest Great Plains. Global Biogeochemical Cycles 20, 2006, GB4012, doi: 10. 1029/2005GB002610.
DOI: 10.1029/2005gb002610
Google Scholar
[18]
B. Bolin, R. Sukumar. Global perspective. In: Watson, R.T., Noble, I.R., Bolin,B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J. (Eds. ), Land use, Land-use Change, and Forestry. Cambridge University Press, Cambridge, UK, 2000, p.23–51.
DOI: 10.1017/s0376892901280308
Google Scholar
[19]
P. M. Fearnside, R. I. Barbosa. Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. Forest Ecology and Management, 1998, 108: p.147–166.
DOI: 10.1016/s0378-1127(98)00222-9
Google Scholar
[20]
R. A. Houghton. The annual net flux of carbon to the atmosphere from changes in land-use 1850–1990. Tellus, 1999, 51B: p.298–313.
DOI: 10.1034/j.1600-0889.1999.00013.x
Google Scholar
[21]
K. Baumert, J. Pershing, T. Herzog, et al. Climate Data: Insights and Observations. Pew Center on Global Climate Change. World Resources Institute, Arlington, VA. (2004).
Google Scholar
[22]
J. Dumanski. Carbon sequestration, soil conservation, and the Kyoto protocol: summary of implications. Climatic Change, 2004, 65: p.255–261.
DOI: 10.1023/b:clim.0000038210.66057.61
Google Scholar
[23]
S. Catovsky, M. A. Bradford, A. Hector. Biodiversity and ecosystem productivity: implications for carbon storage. Oikos, 2002, 97, p.443–448.
DOI: 10.1034/j.1600-0706.2002.970315.x
Google Scholar
[24]
G. B. De Deyn, J. H. C. Cornelissen, R. D. Bardgett. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 2008, 11: p.516–531.
DOI: 10.1111/j.1461-0248.2008.01164.x
Google Scholar
[25]
G. K. Phoenix, D. Johnson, J. P. Grime et al. Sustaining ecosystem services in ancient limestone grassland: importance of major component plants and community composition. Journal of Ecology, 2008, 96: p.894–902.
DOI: 10.1111/j.1365-2745.2008.01403.x
Google Scholar
[26]
Y. Oelmann, W. Wilcke, V. M. Temperton et al. Soil and plant nitrogen pools as related to plant diversity in experimental grassland. Soil Science Society of America Journal, 2007, 71: p.720–729.
DOI: 10.2136/sssaj2006.0205
Google Scholar
[27]
D. A. Fornara, D. Tilman. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 2008, 96: p.314–322.
DOI: 10.1111/j.1365-2745.2007.01345.x
Google Scholar