Impact of Land-Use Change on Grassland Carbon Stocks: An Overview of the Literature

Article Preview

Abstract:

Terrestrial vegetation and soils in the terrestrial biosphere play an active role in shaping the environmental systems of the Earth. An improved understanding of changes in carbon storage of terrestrial ecosystems is very important for assessing the impacts of increasing atmospheric CO2 concentration and climate change on the terrestrial biosphere. Accurately predicting terrestrial carbon (C) storage requires understanding the stock and storage potential of C, because it helps us understand how ecosystems would respond to natural and anthropogenic disturbances under different management strategies. Grasslands are important for global carbon balance both for their large area and significant sink or source capacities, depending on the factors of climatic and land-use. Land-use change is often associated with changes in land cover and carbon (C) stocks. Land-use and land cover strongly influence carbon (C) storage and distribution within the grassland ecosystems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

948-951

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. L. Sims, J. A. Bradford Carbon dioxide fluxes in a southern plains prairie. Agric For Meteorol, 2001, p.109: 117–134.

DOI: 10.1016/s0168-1923(01)00264-7

Google Scholar

[2] L. B. Flanagan, L. A. Wever, P. J. Carlson Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Chang Biol, 2002, 8: p.599–615.

DOI: 10.1046/j.1365-2486.2002.00491.x

Google Scholar

[3] L. K. Xu, D. D. Baldocchi. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric for Meteorol, 2004, 123: p.79–96.

DOI: 10.1016/j.agrformet.2003.10.004

Google Scholar

[4] Z. Nagy, K. Pinter, S. Czobel. The carbon budget of semi-arid grassland in a wet and dry year in Hungary. Agric Ecosyst Environ, 2007, 121: p.21–29.

Google Scholar

[5] J. M. Adams, H. Faure, L. Fauredenard. Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 1990, 348: p.711–714.

DOI: 10.1038/348711a0

Google Scholar

[6] P. L. Sims, P. G. Risser. Grasslands. In: Barbour MG, Billings WD (eds) Northern American terrestrial vegetation, 2nd edn. Cambridge University Press, New York, p.323–356. (2000).

Google Scholar

[7] J. M. O. Scurlock, D. O. Hall. The global carbon sink: a grassland perspective. Glob Chang Biol , 1998, 4: p.229–233.

Google Scholar

[8] A. E. Suyker, S. B. Verma Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Chang Biol, 2001, 7: p.279–289.

DOI: 10.1046/j.1365-2486.2001.00407.x

Google Scholar

[9] A. K. Knapp, P. A. Fay, J. M. Blair. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 2002, 298: p.2202–2205.

DOI: 10.1126/science.1076347

Google Scholar

[10] J. E. Hunt, F. M . Kelliher, T. M. McSeveny. Long-term carbon exchange in a sparse, seasonally dry tussock grassland. Glob Chang Biol, 2004, 10: p.1785–1800.

DOI: 10.1111/j.1365-2486.2004.00842.x

Google Scholar

[11] K. A. Novick, P. C. Stoy, G. G. Katul, D. S. Ellsworth. Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia, 2004, 138: p.259–274.

DOI: 10.1007/s00442-003-1388-z

Google Scholar

[12] J. Ni. Carbon storage in grasslands of China. J Arid Environ, 2002, 50: p.205–218.

Google Scholar

[13] J. Ni. Forage yield-based carbon storage in grasslands of China. Clim Change, 2004a, 67: p.237–246.

DOI: 10.1007/s10584-004-0070-8

Google Scholar

[14] Y. D. Pan, J. M. Melillo, A. D. McGuire et al. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecologia, 1998, 114: p.389.

DOI: 10.1007/s004420050462

Google Scholar

[15] P. Friedlingstein, P. Cox, R. Betts et al. Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. Journal of Climate, 2006, 19: p.3337–3353.

Google Scholar

[16] E. A. Davidson, D. C. Nepstad, C. Klink et al. Pasture soils as carbon sink. Nature, 1995, 376: p.472–473.

DOI: 10.1038/376472a0

Google Scholar

[17] Z. Tan, S. Liu, C. A. Johnston. et al. Analysis of ecosystem controls on soil carbon source–sink relationships in the northwest Great Plains. Global Biogeochemical Cycles 20, 2006, GB4012, doi: 10. 1029/2005GB002610.

DOI: 10.1029/2005gb002610

Google Scholar

[18] B. Bolin, R. Sukumar. Global perspective. In: Watson, R.T., Noble, I.R., Bolin,B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J. (Eds. ), Land use, Land-use Change, and Forestry. Cambridge University Press, Cambridge, UK, 2000, p.23–51.

DOI: 10.1017/s0376892901280308

Google Scholar

[19] P. M. Fearnside, R. I. Barbosa. Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. Forest Ecology and Management, 1998, 108: p.147–166.

DOI: 10.1016/s0378-1127(98)00222-9

Google Scholar

[20] R. A. Houghton. The annual net flux of carbon to the atmosphere from changes in land-use 1850–1990. Tellus, 1999, 51B: p.298–313.

DOI: 10.1034/j.1600-0889.1999.00013.x

Google Scholar

[21] K. Baumert, J. Pershing, T. Herzog, et al. Climate Data: Insights and Observations. Pew Center on Global Climate Change. World Resources Institute, Arlington, VA. (2004).

Google Scholar

[22] J. Dumanski. Carbon sequestration, soil conservation, and the Kyoto protocol: summary of implications. Climatic Change, 2004, 65: p.255–261.

DOI: 10.1023/b:clim.0000038210.66057.61

Google Scholar

[23] S. Catovsky, M. A. Bradford, A. Hector. Biodiversity and ecosystem productivity: implications for carbon storage. Oikos, 2002, 97, p.443–448.

DOI: 10.1034/j.1600-0706.2002.970315.x

Google Scholar

[24] G. B. De Deyn, J. H. C. Cornelissen, R. D. Bardgett. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 2008, 11: p.516–531.

DOI: 10.1111/j.1461-0248.2008.01164.x

Google Scholar

[25] G. K. Phoenix, D. Johnson, J. P. Grime et al. Sustaining ecosystem services in ancient limestone grassland: importance of major component plants and community composition. Journal of Ecology, 2008, 96: p.894–902.

DOI: 10.1111/j.1365-2745.2008.01403.x

Google Scholar

[26] Y. Oelmann, W. Wilcke, V. M. Temperton et al. Soil and plant nitrogen pools as related to plant diversity in experimental grassland. Soil Science Society of America Journal, 2007, 71: p.720–729.

DOI: 10.2136/sssaj2006.0205

Google Scholar

[27] D. A. Fornara, D. Tilman. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 2008, 96: p.314–322.

DOI: 10.1111/j.1365-2745.2007.01345.x

Google Scholar