Robust Visual Tracking Using Particle Filtering on SL(3) Group

Article Preview

Abstract:

Considering the process of objects imaging in the camera is essentially the projection transformation process. The paper proposes a novel visual tracking method using particle filtering on SL(3) group to predict the changes of the target area boundaries of next moment, which is used for dynamic model. Meanwhile, covariance matrices are applied for observation model. Extensive experiments prove that the proposed method can realize stable and accurate tracking for object with significant geometric deformation, even for nonrigid objects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1028-1031

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Kwon and F. C. Park, Visual tracking via particle filtering on the affine group, in Proceedings of International Conference on Information and Automation, 2008, pp.198-216.

DOI: 10.1109/icinfa.2008.4608144

Google Scholar

[2] J. H. Kwon, K. M Lee and F. C. Park, Visual tracking via geometric particle filtering on the affine group with optimal importance functions, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp.991-998.

DOI: 10.1109/cvpr.2009.5206501

Google Scholar

[3] Y. Wu, B. Wu, J. Liu and H.Q. Lu, Probabilistic tracking on Riemannian manifolds, in Proceedings of 19th International Conference on Pattern Recognition, 2008, pp.1-4.

DOI: 10.1109/icpr.2008.4761046

Google Scholar

[4] Y. Wu, J.O. Wang AND H.Q. Lu, Real-time visual tracking via incremental covariance model update on Log-Euclidean Riemannian manifold, in Proceedings of Chinese Conference on Pattern Recognition, 2009, pp.1-5.

DOI: 10.1109/ccpr.2009.5344069

Google Scholar

[5] D. Comaniciu, V. Ramesh and P. Meer, Kernel-based object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, 2003, pp.564-577.

DOI: 10.1109/tpami.2003.1195991

Google Scholar

[6] P. Perez, C. Hue , J. Vemaak and M. Gangnet, Color-Based probabilistic tracking, in Proceedings of 7th European Conference on Computer Vision. Copenhagen, 2002, pp.661-675.

DOI: 10.1007/3-540-47969-4_44

Google Scholar

[7] F. Porikli, O. Tuzel and P. Meer, Covariance tracking using model update based on Lie algebra, in Proceedings of IEEE Computer Society Conference on  Computer Vision and Pattern Recognition, 2006, pp.728-735.

DOI: 10.1109/cvpr.2006.94

Google Scholar

[8] O. Tuzel, F. Porikli, and P, Meer. region covariance: A fast descriptor for detection and classification, , in Proceedings of 9th European Conference on Computer Vision , 2006, pp.589-600.

DOI: 10.1007/11744047_45

Google Scholar

[9] Y.P. Liu, G. W. Li and Z. L. SH, Projective registration algorithm based on Riemannian manifold, ACTA Automatica Sinica, Vol. 35, 2009, pp.1378-1386.

DOI: 10.3724/sp.j.1004.2009.01378

Google Scholar

[10] C. Mei, S. Benhimane, E. MALLS, and P. Rives, Homography-based tracking for central catadioptric cameras, in Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, p.669 – 674.

DOI: 10.1109/iros.2006.282553

Google Scholar

[11] S. Benhimane, E. MALLS, Homography-based 2D Visual Tracking and Servoing, The International Journal of Robotics Research, Vol. 26, 2007, p.661–676.

DOI: 10.1177/0278364907080252

Google Scholar