[1]
V. Venkatasubramanian, R. Vaidyanathan, Y. Yamamoto. Process fault detection and diagnosis using neural networks—I. Steady-state processes[J]. Computers & Chemical Engineering, 1990, vol. 14, pp.699-712.
DOI: 10.1016/0098-1354(90)87081-y
Google Scholar
[2]
R. Salustowicz, J. Schmidhuber. Probabilistic incremental program evolution[J]. Evolutionary Computation, 1997, vol. 14, pp.123-141.
DOI: 10.1162/evco.1997.5.2.123
Google Scholar
[3]
J. Kennedy, R. Eberhart [C]/C., Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ. 1995: 1942-(1948).
Google Scholar
[4]
Y. Chen, B. Yang and J. Dong, Nonlinear System Modeling via Optimal Design of Neural Trees, International Journal of Neural Systems, Vol. 14, No. 2, pp.125-137, (2004).
DOI: 10.1142/s0129065704001905
Google Scholar
[5]
Y. Chen, B. Yang, J. Dong and A., Time-series Forecasting Using Flexible Neural Tree Model, Information Science, Vol. 174, Issues 3/4, pp.219-235, (2005).
DOI: 10.1016/j.ins.2004.10.005
Google Scholar
[6]
Y. Chen, A. Abraham, J. Yang and B. Yang, Hybrid Methods for Stock Index Modeling, Fuzzy Systems and Knowledge Discovery: Second International Conference (FSKD 2005), China, Lecture Notes on Computer Science 3614, pp.1067-1070, (2005).
DOI: 10.1007/11540007_137
Google Scholar
[7]
Y. Chen, A. Abraham, Y. Zhang, Ensemble of Flexible Neural Trees for Breast Cancer Detection, The International Journal of Information Technology and Intelligent Computing, Vol. 1, No. 1, pp.187-201, (2006).
Google Scholar
[8]
Y. Chen, L. Peng, A. Abraham, Stock Index Modeling using Hierarchical RBF Networks, 10th International Conference on Knowledge-Based & Intelligent Information & Engineering Systems (KES'06), Part III, Lecture Notes on Artificial Intelligence, Vol. 4253, pp.398-405, (2006).
DOI: 10.1007/11893011_51
Google Scholar
[9]
Y. Shi, R. Eberhart, A modified particle swarm optimizer[C] /Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. IEEE, 1998, pp.69-73.
DOI: 10.1109/icec.1998.699146
Google Scholar
[10]
D. Zhu, R. Wu, A multi-layer quantum neural networks recognition system for handwritten digital recognition[C]/Natural Computation, 2007. ICNC 2007. Third International Conference on. IEEE, 2007, 1, pp.718-722.
DOI: 10.1109/icnc.2007.70
Google Scholar
[11]
Gopathy P, Nicolaos B, Karayiannis NB, Quantum neural networks: Inherently fuzzy feedforwardneural networks, IEEE Trans on Neural Networks, vol. 8, pp.679-693, (1997).
DOI: 10.1109/72.572106
Google Scholar
[12]
X. Huang, Y. Chen, X. Feng, Optimization of Flexible Neural Tree Based on Improved Particle Swarm, Computer system & applications, 2010, Vol. 19 No. 8,pp.96-99 (in Chinese).
Google Scholar