Dependence of Oscillation of Spiking Neural Population on Strength of Inhibitory Feedback

Article Preview

Abstract:

Based on linear-response-like approach and simulations, the relationship between the strength of inhibitory feedback and the oscillation is explored by spectral properties of networks with leaky integrate-and-fire neurons under varying feedback strength. It is found that the network oscillation is enhanced sharply with increasing the feedback strength when the feedback is weak, but is insensitive to the feedback strength when the feedback is not weak. These results suggest that inhibitory feedback plays a limited role in enhancing the network oscillation. A qualitative analysis of the limited role of the inhibitory feedback in enhancing network oscillation is also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1087-1092

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Yamaguchi, K. Kishida, E. Nunohiro, J. G. Park, K. J. Mackin, K. Hara et al. Application of artificial neural network for paddy field classification using spatiotemporal information. Information-An International Interdisciplinary Journal, 2010, Vol. 13, No. 3(B).

DOI: 10.1007/s10015-010-0797-4

Google Scholar

[2] S. Ray, E. Niebur, S. S. Hsiao, A. Sinai, and N. E. Crone. High-frequency gamma activity(80-150Hz) is increased in human cortex during selective attention. Clin. Neurophysiol., 2008, 119, 116-133.

DOI: 10.1016/j.clinph.2007.09.136

Google Scholar

[3] Y. Dong, S. Mihalas, F. Qiu, R. von der Heydt, and E. Niebur. Synchrony and the binding problem in macaque visual cortex. J. Vision, 2008, 8, 1–16.

DOI: 10.1167/8.7.30

Google Scholar

[4] M. J. Chacron. and J. Bastian. Population coding by electrosensory neurons. J. Neurophysiol., 2008, 99, 1825-1835.

DOI: 10.1152/jn.01266.2007

Google Scholar

[5] X. J. Wang and G. Buzsaki. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci., 1996, 16, 6402–6413.

DOI: 10.1523/jneurosci.16-20-06402.1996

Google Scholar

[6] B. Lindner, B. Doiron, and A. Longtin. Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E., 2005, 72, 061919.

DOI: 10.1103/physreve.72.061919

Google Scholar

[7] S. B. Eric, J. Kresimir, R. Jaime de la, and D. Brent. Correlation and Synchrony Transfer in Integrate-and-Fire Neurons: Basic Properties and Consequences for Coding. Phys. Rev. Lett., 2008, 100, 108102.

DOI: 10.1103/physrevlett.100.108102

Google Scholar

[8] B. Doiron, M. J. Chacron, L. Maler, A. Longtin, and J. Bastian. Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature, 2003, 421, 539-543.

DOI: 10.1038/nature01360

Google Scholar

[9] B. Doiron, B. Lindner, A. Longtin, L. Maler, and J. Bastian. Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Phys. Rev. Lett. 2004, 93(4), 048101.

DOI: 10.1103/physrevlett.93.048101

Google Scholar

[10] M. Bartos, I. Vida, and P. Jonas. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneurons networks. Nat. Rev. Neurosci., 2007, 8, 45-56.

DOI: 10.1038/nrn2044

Google Scholar

[11] D. Marinazzo, H. J. Kappen, and S. C. A. M. Gielen. Input-driven oscillations in networks with excitatory and inhibitory neurons with dynamic synapses. Neural Comput., 2007, 19, 1739-1765.

DOI: 10.1162/neco.2007.19.7.1739

Google Scholar

[12] L. Maler. Neural strategies for optimal processing of sensory signals. Progress in Brain Research, 2007, 165, 65009.

Google Scholar

[13] K. Pakdaman, S. Tanabe, and T. Shimokawa. Coherence resonance and discharge time reliability in neurons and neuronal models. Neural Networks, 2001, 14, 895-905.

DOI: 10.1016/s0893-6080(01)00025-9

Google Scholar

[14] Z. Wang, H. Fan, and K. Aihara, Three synaptic components contributing to robust network synchronization. Phys. Rev. E., 2011, 83, 051905.

DOI: 10.1103/physreve.83.051905

Google Scholar

[15] B. Bathellier, A. Carleton, and W. Gerstner. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks. Neural Comput., 2008, 20, 2973-3002.

DOI: 10.1162/neco.2008.11-07-636

Google Scholar