[1]
T. Yamaguchi, K. Kishida, E. Nunohiro, J. G. Park, K. J. Mackin, K. Hara et al. Application of artificial neural network for paddy field classification using spatiotemporal information. Information-An International Interdisciplinary Journal, 2010, Vol. 13, No. 3(B).
DOI: 10.1007/s10015-010-0797-4
Google Scholar
[2]
S. Ray, E. Niebur, S. S. Hsiao, A. Sinai, and N. E. Crone. High-frequency gamma activity(80-150Hz) is increased in human cortex during selective attention. Clin. Neurophysiol., 2008, 119, 116-133.
DOI: 10.1016/j.clinph.2007.09.136
Google Scholar
[3]
Y. Dong, S. Mihalas, F. Qiu, R. von der Heydt, and E. Niebur. Synchrony and the binding problem in macaque visual cortex. J. Vision, 2008, 8, 1–16.
DOI: 10.1167/8.7.30
Google Scholar
[4]
M. J. Chacron. and J. Bastian. Population coding by electrosensory neurons. J. Neurophysiol., 2008, 99, 1825-1835.
DOI: 10.1152/jn.01266.2007
Google Scholar
[5]
X. J. Wang and G. Buzsaki. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci., 1996, 16, 6402–6413.
DOI: 10.1523/jneurosci.16-20-06402.1996
Google Scholar
[6]
B. Lindner, B. Doiron, and A. Longtin. Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E., 2005, 72, 061919.
DOI: 10.1103/physreve.72.061919
Google Scholar
[7]
S. B. Eric, J. Kresimir, R. Jaime de la, and D. Brent. Correlation and Synchrony Transfer in Integrate-and-Fire Neurons: Basic Properties and Consequences for Coding. Phys. Rev. Lett., 2008, 100, 108102.
DOI: 10.1103/physrevlett.100.108102
Google Scholar
[8]
B. Doiron, M. J. Chacron, L. Maler, A. Longtin, and J. Bastian. Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature, 2003, 421, 539-543.
DOI: 10.1038/nature01360
Google Scholar
[9]
B. Doiron, B. Lindner, A. Longtin, L. Maler, and J. Bastian. Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Phys. Rev. Lett. 2004, 93(4), 048101.
DOI: 10.1103/physrevlett.93.048101
Google Scholar
[10]
M. Bartos, I. Vida, and P. Jonas. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneurons networks. Nat. Rev. Neurosci., 2007, 8, 45-56.
DOI: 10.1038/nrn2044
Google Scholar
[11]
D. Marinazzo, H. J. Kappen, and S. C. A. M. Gielen. Input-driven oscillations in networks with excitatory and inhibitory neurons with dynamic synapses. Neural Comput., 2007, 19, 1739-1765.
DOI: 10.1162/neco.2007.19.7.1739
Google Scholar
[12]
L. Maler. Neural strategies for optimal processing of sensory signals. Progress in Brain Research, 2007, 165, 65009.
Google Scholar
[13]
K. Pakdaman, S. Tanabe, and T. Shimokawa. Coherence resonance and discharge time reliability in neurons and neuronal models. Neural Networks, 2001, 14, 895-905.
DOI: 10.1016/s0893-6080(01)00025-9
Google Scholar
[14]
Z. Wang, H. Fan, and K. Aihara, Three synaptic components contributing to robust network synchronization. Phys. Rev. E., 2011, 83, 051905.
DOI: 10.1103/physreve.83.051905
Google Scholar
[15]
B. Bathellier, A. Carleton, and W. Gerstner. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks. Neural Comput., 2008, 20, 2973-3002.
DOI: 10.1162/neco.2008.11-07-636
Google Scholar