[1]
C. Sun, S. Rajasekhara, J.B. Goodenough, et al. Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode[J]. Journal of the American Chemical Society, 2011, 133: 2132-2135.
DOI: 10.1021/ja1110464
Google Scholar
[2]
M. Wagemaker, D.P. Singh, W.J.H. Borghols, et al. Dynamic Solubility Limits in Nanosized Olivine LiFePO4[J]. Journal of the American Chemical Society, 2011, 133: 10222-10228.
DOI: 10.1021/ja2026213
Google Scholar
[3]
D. Jugovic, D. Uskokovic. A review of recent developments in the synthesis procedures of lithium iron phosphate powders[J]. Journal of Power Sources, 2009, 190(2): 538-544.
DOI: 10.1016/j.jpowsour.2009.01.074
Google Scholar
[4]
D. Zhao, Y.L. Feng, Y.G. Wang, et al. Electrochemical performance comparison of LiFePO4 supported by various carbon materials[J]. Electrochimica Acta, 2013, 88: 632-638.
DOI: 10.1016/j.electacta.2012.10.101
Google Scholar
[5]
M. Vujkovic, I. Stojkovic, N. Cvjeticanin, et al. Gel-combustion synthesis of LiFePO4/C composite with improved capacity retention in aerated aqueous electrolyte solution[J]. Electrochimica Acta, 2013, 92: 248-256.
DOI: 10.1016/j.electacta.2013.01.030
Google Scholar
[6]
S.M. Zheng, X. Wang, X. Huang, et al. Hydrothermal synthesis of Ni-doped carbom-like LiFe0. 95Ni0. 05PO4 powders[J]. Ceramics International, 2012, 38(5): 4391-4394.
DOI: 10.1016/j.ceramint.2012.01.025
Google Scholar
[7]
X.Q. Qu, G.C. Liang, J.S. Liang, et al. LiFePO4 doped with magnesium prepared by hydrothermal reaction in glucose solution[J]. Chinese Chemical Letters, 2008, 19: 345-349.
DOI: 10.1016/j.cclet.2007.10.052
Google Scholar
[8]
B. Pei, Q. Wang, W. Xin, et al. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping[J]. Electrochimica Acta, 2011, 56(16): 5667-5672.
DOI: 10.1016/j.electacta.2011.04.024
Google Scholar