[1]
T. Ishihara, H. Nishiguchi, K. Fukamachi, Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O. J Phys Chem B, 103 (1999) 1-3.
Google Scholar
[2]
J.S. Xu, D.F. Xue, C.L. Yan, chemical synthesis of NaTaO3 powder at low temperature. Materials Letters, 59 (2005) 2920-2922.
DOI: 10.1016/j.matlet.2005.04.043
Google Scholar
[3]
H. Kato, A. Kudo, New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett, 295 (1998) 487-492.
DOI: 10.1016/s0009-2614(98)01001-x
Google Scholar
[4]
H. Kato, A. Kudo, Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catal Lett, 58 (1999) 153-155.
Google Scholar
[5]
Y.G. Su, S.W. Wang, Y. Meng, H. Han, X.J. Wang, Dual substitutions of single dopant Cr3+ in perovskite NaTaO3: synthesis, structure, and photocatalytic performance, RSC Adv., 2 (2012) 12932-12939.
DOI: 10.1039/c2ra21241b
Google Scholar
[6]
P. Kanhere, J.W. Zheng, Z. Chen, Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3, Int J Hydrogen Energy, 37 (2012) 4889-4896.
DOI: 10.1016/j.ijhydene.2011.12.056
Google Scholar
[7]
H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure, J Am Chem Soc, 125 (2003) 3082-3089.
DOI: 10.1021/ja027751g
Google Scholar
[8]
H.B. Fu, S.C. Zhang, L.W. Zhang, Y.F. Zhu, Visible-light-driven NaTaO3-Nx catalyst prepared by a hydrothermal process, Mater Res Bull, 43 (2008) 64-872.
DOI: 10.1016/j.materresbull.2007.05.013
Google Scholar
[9]
Z.G. Yi, J. H. Ye, Band gap tuning of Na1−xLaxTa1−xCoxO3 solid solutions for visible light photocatalysis, Appl. Phys. Lett, 91 (2007) 254108.
DOI: 10.1063/1.2826277
Google Scholar
[10]
Z.G. Yi, J.H. Ye, Band gap tuning of Na1−xLaxTa1−xCrxO3 for H2 generation from water under visible light irradiation, J. Appl. Phys., 106 (2009) 074910.
DOI: 10.1063/1.3243282
Google Scholar