Multitarget Track-Before-Detect via MeMBer Filtering and Track Consistency Test

Article Preview

Abstract:

This paper deals with the problem of time-varying multitarget track-before-detect (TBD) using image observation model. The multitarget state is formulated as random finite set (RFS) and its posterior distribution is approximated by multi-Bernoulli parameters, which are recursively evaluated using sequential Monte Carlo approach. The state estimates are first extracted from the updated Bernoulli components with moderate existence probabilities, allowing for all the true targets and false alarms. The extracted target states are then distilled using track consistency test strategy to remain only the true tracks. Simulation results show the improved performance of the proposed method over the traditional multitarget multi-Bernoulli (MeMBer) filter as well as its capability to provide the identity of individual target.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

848-855

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. M Tonissen, Y Bar-Shalom, Maximum likelihood track-before-detect with fluctuating target amplitude, IEEE Trans. Aerosp. Electron. Syst., 34(3), 1998, p.796–809.

DOI: 10.1109/7.705887

Google Scholar

[2] L. A. Johnston, V. Krishnamuthy, Performance analysis of a dynamic programming track-before-detect algorithm, IEEE Trans. Aerosp. Electron. Syst., 38(1), 2002, p.228–242.

DOI: 10.1109/7.993242

Google Scholar

[3] S. J. Davey, M. G. Rutten, B. Cheung, A comparison of detection performance for several track-before-detect algorithms, EURASIP Journal on Advances in Signal Process., vol 2008, 2008, 1–10.

DOI: 10.1155/2008/428036

Google Scholar

[4] Y. Boers, J. N. Driessen, Multitarget particle filter track before detect application, IEE Proc-Radar, Sonar, Navig., 151(6), 2004, p.351–357.

DOI: 10.1049/ip-rsn:20040841

Google Scholar

[5] M. R. Morelande, C. M. Kreucher, K. Kastella, A Bayesian approach to multiple target detection and tracking, IEEE Trans. Signal Process., 55(5), 2007, p.1589–1604.

DOI: 10.1109/tsp.2006.889470

Google Scholar

[6] S. Buzzi, M. Lops, L. Venturino, M. Ferri, Track-before-detect procedures in a multi-target environment, IEEE Trans. Aerosp. Electron. Syst., 44(3), 2008, p.1135–1150.

DOI: 10.1109/taes.2008.4655369

Google Scholar

[7] B. K. Habtemariam, R. Tharmarasa, T. Kirubarajan, PHD filter based track-before-detect for MIMO radars, Signal Process., 92, 2012, p.667–678.

DOI: 10.1016/j.sigpro.2011.09.007

Google Scholar

[8] S. Arulampalam, S. Maskell, N. Gordan, T. Clapp, A tutorial on particle filter for on-line nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50(2), 2002, p.174–188.

DOI: 10.1109/78.978374

Google Scholar

[9] R. Mahler, Statistical Multisource-Multitarget Information Fusion. Boston: Artech House, (2007).

Google Scholar

[10] B. -N. Vo, B. -T. Vo, N. T. Pham, D. Suter, Joint detection and estimation of multiple objects from image observations, IEEE Trans. Signal Process., 58(10), 2010, p.5129–5241.

DOI: 10.1109/tsp.2010.2050482

Google Scholar

[11] R. Hoseinnezhad, B. -N. Vo, B. -T. Vo, D. Suter, Visual tracking of numerous targets via multi-Bernoulli filtering of image data, Pattern Recogn., 45(10), 2012, p.3625–3635.

DOI: 10.1016/j.patcog.2012.04.004

Google Scholar

[12] D. Schuhmacher, B. -T. Vo, B. -N. Vo, A consistent metric for performance evaluation of multiobject filters, IEEE Trans. Signal Process., 56(8) , 2008, p.3447–3457.

DOI: 10.1109/tsp.2008.920469

Google Scholar