Molecular Dynamics Simulation of Stick-Slip Friction on a Metal Surface

Article Preview

Abstract:

Friction on the atomistic scale was simulated using a molecular dynamics model consisting of a slider and substrate. The slider is in contact with the substrate through interatomic forces, while being pulled by a spring connected to a tractor moving parallel to the substrate surface at a constant velocity. The frictional force, which is defined as the force working on the connecting spring, is registered as the slider moves over the substrate, and consequently stick-slip behavior is observed. The static frictional force is higher if the lattice mismatch between slider and substrate is smaller. The sliding velocity affects whether atoms can rapidly settle into a stable site, and hence affects the kinetic friction; at high velocities, the atoms are forcibly moved resulting in a smaller kinetic friction force and a steady force curve.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-33

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Gnecco, R. Bennewitz, A. Socoliuc and E. Meyer: Friction and wear on the atomic scale, Wear, Vol. 254 (2003), PP. 859-862.

DOI: 10.1016/s0043-1648(03)00236-9

Google Scholar

[2] A. Socoliuc, R. bennewitz, E. Gnecco and E. Meyer: Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction, Phys. Rev. Lett., Vol. 92 (2004), #134301.

DOI: 10.1103/physrevlett.92.134301

Google Scholar

[3] S. Maier, Y. Sang, T. Filleter, M. Grant and R. Bennewitz: Fluctuations and jump dynamics in atomic friction experiments, Phys. Rev. B, Vol. 72 (2005), #245418.

DOI: 10.1103/physrevb.72.245418

Google Scholar

[4] A. Socoliuc, E. Gnecco, S. Maier, O. Pfeiffer, A. Baratoff, R. Bennewitz and E. Meyer: Atomic- scale control of friction by actuation of nanometer-sized contacts, Science, Vol. 313 (2006), pp.207-210.

DOI: 10.1126/science.1125874

Google Scholar

[5] R. Roth, T. Glatzel, P. Steiner, E. Gnecco, A. Baratoff and E. Meyer: Multiple slips in atomic- scale friction: An indicator for the lateral contact damping, Tribology Lett., Vol. 3 (2010), pp.63-69.

DOI: 10.1007/s11249-009-9567-7

Google Scholar

[6] P. Steiner, E. Gnecco, T. Filleter, N.N. Gosvami, S. Maier, E. Meyer and R. Bennewitz: Atomic friction investigations on ordered superstructures, Tribology Lett., Vol. 39 (2010), pp.321-327.

DOI: 10.1007/s11249-010-9677-2

Google Scholar

[7] M.R. Sorensen, K.W. Jacobsen and P. Stoltze: Simulations of atomic-scale sliding friction, Phys. Rev. B, Vol. 53 (1996), pp.2101-2113.

DOI: 10.1103/physrevb.53.2101

Google Scholar

[8] D. Mulliah, S. D. Kenny and R. Smith: Modeling of stick-slip phenomena using molecular dynamics, Phys. Rev. B, Vol. 69 (2004), #205407.

DOI: 10.1103/physrevb.69.205407

Google Scholar

[9] P. Steiner, R. Roth, E. Gnecco, A. Baratoff, S. Maier, T. Glatzel and E. Meyer: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite, Phys. Rev. B, Vol. 79 (2009), #045414.

DOI: 10.1103/physrevb.79.045414

Google Scholar

[10] P. Spijker, G. Anciaux and J.F. Molinari: Relations between roubhness, temperature and dry sliding friction at the atomic scale, Tribology Int., Vol. 59 (2013), pp.222-229.

DOI: 10.1016/j.triboint.2012.02.009

Google Scholar