[1]
K. Streitlien, G. S. Triantafyllou, M.S. Triantafyllou, Efficient foil propulsion through vortex control, AIAA Journal, 34, 1996, 2315-2319.
DOI: 10.2514/3.13396
Google Scholar
[2]
Witting J, Safak K, Adamas G. Shape memory alloy actuators applied to biomimetric underwater robots. In: Ayers J, Davis J, Rudolph A (eds). Neurotechnology for Biomimetic Robots, MIT Press, USA, 2011, 117-136.
DOI: 10.7551/mitpress/4962.003.0012
Google Scholar
[3]
J. Liang, etc, Researchful development of underwater robofish II-develoopment of a small experimental robofish, Robot, 24, (2002).
Google Scholar
[4]
Yu J, Tan M, Wang S, Chen E. Development of a biomimetic robotic fish and its control algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2004, 34, 1798-1810.
DOI: 10.1109/tsmcb.2004.831151
Google Scholar
[5]
Jindong Liu, Huosheng Hu, A 3D Simulator for Autonomous Robotic Fish, International Journal of Automation and Computing, 2004, 42-50.
Google Scholar
[6]
M. J. Lighthill, Note on the swimming of slender fish, J. Fluid Mech., 9, 1960, 305-317.
DOI: 10.1017/s0022112060001110
Google Scholar
[7]
Siby Philip, J.P.M., Fish Lateral Line Innovation: Insights into the Evolutionary Genomic Dynamics of a Unique Mechanosensory Organ. Molecular Biology and Evolution, 29, 2012, 3887–3898.
DOI: 10.1093/molbev/mss194
Google Scholar
[8]
Zhao W, Yu J. Fang Y, Wang L. Development of multi-mode biomimetic robotic fish based on central pattern generator. Proceedings of International Conference of Intelligent Robots and System, 2006, 3891-3896.
DOI: 10.1109/iros.2006.281800
Google Scholar
[9]
Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 52, 1985, 367-376.
DOI: 10.1007/bf00449593
Google Scholar
[10]
G. Bard Ermentrout, David H. Terman, Mathematical Foundations of Neuroscience, Springer Press, 2010, 1-25.
Google Scholar
[11]
Hassan K. Khalili, Nonlinear Systems (Third Edition), ISBN 978-7-121-12838-7.
Google Scholar
[12]
J. Anderson and E. Rosenfeld. Talking Nets: An Oral History of Neural Networks. MIT, Cambridge, MA, (1998).
Google Scholar
[13]
T. Allen. On the arithmetic of phase locking: coupled neurons as a lattice on R2. Phys. D, 6(3), 1983, 305–320.
DOI: 10.1016/0167-2789(83)90014-3
Google Scholar
[14]
Chunlin Zhou and K. H. Low, Kinematic Modeling Framework for Biomimetic Undulatory Fin Motion Based on Coupled Nonlinear Oscillators, The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, 934-939.
DOI: 10.1109/iros.2010.5651162
Google Scholar
[15]
Anderson J M, Kerrebrock P A. The vorticity control unmanned undersea vehicle (VCUUV): An autonomous robot tuna. Proceedings of 10th International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, USA, 1997, 63-70.
DOI: 10.1109/uust.1989.754724
Google Scholar
[16]
A. Kamimura, et al., Automatic locomotion design and experiments for a Modular robotic system, IEEE/ASME Transactions on Mechatronics, 10, 2005, 314-325.
DOI: 10.1109/tmech.2005.848299
Google Scholar
[17]
Ijspeet A. A Connecctionist Central Pattern Generator for the Aquaticand Terrestrial Gaits of a Simulated Salamander. Biological Cybernetics, 84 (5), 2001, 331-348.
DOI: 10.1007/s004220000211
Google Scholar
[18]
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science: Cambridge University Press, (2001).
DOI: 10.1017/cbo9780511755743
Google Scholar
[19]
R. Ding, et al., CPG-based dynamics modeling and simulation for a biomimetic amphibious robot, in Proceedings of the 2009 international conference on Robotics and biomimetics, Guilin, China, 2009, pp.1657-1662.
DOI: 10.1109/robio.2009.5420415
Google Scholar