[1]
Shahinpoor M, Kim K. Ionic polymer-metal composites: I. Fundamentals [J]. Smart Materials and Structures, 2001, 10(4): 819-833.
DOI: 10.1088/0964-1726/10/4/327
Google Scholar
[2]
Mojarrad M, Shahinpoor M. Biomimetic robot propulsion using polymeric artificial muscles [C] / IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1997: 2152-2157.
DOI: 10.1109/robot.1997.619281
Google Scholar
[3]
Shahinpoor M. Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles[J]. Smart Materials and Structures, 1992, 1(1): 91-94.
DOI: 10.1088/0964-1726/1/1/014
Google Scholar
[4]
Bar-Cohen Y. Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges [M]. Bellingham, Washington USA: SPIE PRESS, (2004).
DOI: 10.1117/3.547465
Google Scholar
[5]
Shahinpoor M. Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles-a review [J]. Electrochimica Acta, 2003, 48(14-16): 2343-2353.
DOI: 10.1016/s0013-4686(03)00224-x
Google Scholar
[6]
Shahinpoor M, Kim K J. Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles [J]. Sensors and Actuators A: Physical, 2002, 96(2-3): 125-132.
DOI: 10.1016/s0924-4247(01)00777-4
Google Scholar
[7]
Kim K J, Shahinpoor M. A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles [J]. Polymer, 2002, 43(3): 797-802.
DOI: 10.1016/s0032-3861(01)00648-6
Google Scholar
[8]
Hang G R, Wang Z L, Li J. Based on the soft fin unit tail fin propulsion miniature robotic fish design research [J]. Robot, 2008, 30(2): 171-175.
Google Scholar
[9]
Toda Y, Ikeda H, Sogihara N. The motion of a fish-like underwater vehicle with two undulating side fins [C] / Proceedings of the 3rd International Symposium on Aero Aqua Bio-mechanisms. Ginowan, Japan, (2006).
Google Scholar
[10]
Xie H B, Zheng F B, Shen L C. Based on the soft long fin wave propulsion of the bionic underwater robot design and implementation [J]. Robot, 2006, 28(5): 525-529.
Google Scholar
[11]
Garner L J, Wilson L N, Lagoudas D C, et al. Development of a shape memory alloy actuated biom imetic vehicle [J]. Smart Materials and Structures, 2000, 9: 673-683.
DOI: 10.1088/0964-1726/9/5/312
Google Scholar
[12]
Guo S X, Fukuda T, Asaka K. A new type of f ish-like underw at er microrobot[J]. IEEE/ASM E Transactions on Mechatronics, 2003, 8(1): 136-141.
DOI: 10.1109/tmech.2003.809134
Google Scholar
[13]
Li L P, Zhou Z R, Lin S W. IPMC artificial muscle preparation technology research and improvement [J]. Function materials, 2011, 42(1): 51-53.
Google Scholar
[14]
He H L, Zhan X H, Wang L. The multilayer structure of ionic type electric actuating artificial muscle preparation and performance[J]. Function materials, 2011, 42(S3): 529-532.
Google Scholar
[15]
Meredith N S, Priam V P, Mary C B. Biaxial elastic-viscoplastic behavior of Nafion membranes [J]. Polymer, 2011, 52(2): 529-539.
DOI: 10.1016/j.polymer.2010.11.032
Google Scholar
[16]
Punning A, Kruusmaa M, Aabloo A. Surface resistance experiments with IPMC sensors and actuators [J]. Sensors and Actuators A: Physical, 2007, 133(1): 200-209.
DOI: 10.1016/j.sna.2006.03.010
Google Scholar
[17]
Yang S B, Han X Y, Qiu J. Ray pectoral fin model of kinematics modeling and simulation [J]. Journal of National Defense University of science and technology, 2009, 31(1): 104-108.
Google Scholar