[1]
Z.M. Jin, M. Stone, E. Ingham, J. Fisher, Biotribology, Curr. Orthopaed., 20 (2006) 32-40.
Google Scholar
[2]
Z.K. Hua, J.H. Zhang, A new simulator for bio-tribological study, Journal of Bionic Engineering, 2008 (5 Suppl. ) 143-147.
Google Scholar
[3]
V. Saikko, A 12–station, anatomic hip joint simulator, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2005 (219) 437-448.
DOI: 10.1243/095441105x34419
Google Scholar
[4]
C. Kaddick, M.A. Wimmer, Hip simulator wear testing according to the newly introduced standard ISO 14242, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2001 (215) 429-442.
DOI: 10.1243/0954411011536019
Google Scholar
[5]
V. Saikko, T. Ahlroos, O. Calonius, A three-axis knee wear simulator with ball-on-flat contact, Wear. 249 (2001) 310–315.
DOI: 10.1016/s0043-1648(01)00567-1
Google Scholar
[6]
Z.K. Hua, J.H. Zhang, Axiomatic design of a multi-directional motion pin on disk apparatus for biotribology study. Proceedings of the STLE/ASME International Joint Tribology Conference 2010, Oct. 17-20, San Francisco, 37-39.
DOI: 10.1115/ijtc2010-41039
Google Scholar
[7]
O. Calonius,V. Saikko, Analysis of relative motion between femoral head and acetabular cup and advances in computation of the wear factor for the prosthetic hip joint, Acta Polytechnica, 2003 (43) 43-54.
DOI: 10.14311/454
Google Scholar
[8]
V. Saikko, O. Calonius, J. Keränen, Effect of Extend of motion and type of load on the wear of polyethylene in biaxial hip simulator, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003 (65) 186-192.
DOI: 10.1002/jbm.b.10556
Google Scholar
[9]
A. Wang, D.C. Sun, S.S. Yau, et al. Orientation softening in the deformation and wear of ultra–high molecular weight polyethylene, Wear, 1997 (203) 230-241.
DOI: 10.1016/s0043-1648(96)07362-0
Google Scholar
[10]
L.A. Korduba, A. Wang. The effect of cross-shear on the wear of virgin and highly-crosslinked Polyethylene, Wear. 271 (2011) 1220-1223.
DOI: 10.1016/j.wear.2011.01.039
Google Scholar
[11]
M.A. Hamilton, M.C. Sucec, B.J. Fregly, S.A. Banks, W.G. Sawyer, Quantifying multidirectional sliding motions in total knee replacements, J. Tribol. 127 (2005)280–286.
DOI: 10.1115/1.1843136
Google Scholar
[12]
V. Saikko, A multidirectional motion pin-on-disk wear test method for prosthetic joint materials, J. Biomed. Mat. Res. 41 (1998) 58-64.
DOI: 10.1002/(sici)1097-4636(199807)41:1<58::aid-jbm7>3.0.co;2-p
Google Scholar
[13]
V. Saikko, A hip wear simulator with 100 test stations, Proc. IMechE Part H: J. Eng. Med., 219 (2005) 309-318.
DOI: 10.1243/095441105x34301
Google Scholar
[14]
V. Saikko, Performance analysis of an orthopaedic biomaterial 100-station wear test system, Proc. IMechE Part C: J. Mech. Eng. Sci., 224 (2005) 97-701.
Google Scholar
[15]
V. Saikko, J. Keranen, Wear Simulation of alumina-on-alumina prosthetic hip joints using a multidirectional motion pin-on-disk device, J. Am. Ceram. Soc., 85 (2002) 2785-2791.
DOI: 10.1111/j.1151-2916.2002.tb00529.x
Google Scholar