[1]
G. Kofod, Dielectric Elastomer Actuators, Ph. D Thesis. Department of Chemistry, The Technical University of Denmark, (2001).
Google Scholar
[2]
R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, SCIENCE 287 (2000) 836-839.
DOI: 10.1126/science.287.5454.836
Google Scholar
[3]
F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology, Elsevier Press, Amsterdam, the Netherlands, (2008).
DOI: 10.1016/b978-0-08-047488-5.00033-2
Google Scholar
[4]
Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential, and Challenges, 2nd ed. SPIE, Bellingham, USA, (2004).
DOI: 10.1117/3.547465
Google Scholar
[5]
D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker, Soft robotics: Biological inspiration, state of the art, and future research, Applied Bionics and Biomechanics 5 (2008) 99-117.
DOI: 10.1080/11762320802557865
Google Scholar
[6]
E. Biddiss, T. Chau, Dielectric elastomers as actuators for upper limb prosthetics: Challenges and opportunities, Medical Engineering & Physics 30 (2008) 403-18.
DOI: 10.1016/j.medengphy.2007.05.011
Google Scholar
[7]
I.M. Koo, K. Jung, J.C. Koo, J.D. Nam, Y.K. Lee, H.R. Choi, Development of Soft-Actuator-Based Wearable Tactile Display, IEEE TRANSACTIONS ON ROBOTICS 24 (2008) 549-558.
DOI: 10.1109/tro.2008.921561
Google Scholar
[8]
Q. Pei, R. Pelrine, M. Rosenthal, S. Stanford, H. Prahlad, R. Kornbluh, Recent progress on electroelastomer artificial muscles and their application for biomimetic robots, Proceedings of SPIE Smart Structures and Materials: Electroactive Polymer Actuators and Devices, San Diego, California, March 14-18, 2004, 5385 (2004).
DOI: 10.1117/12.540462
Google Scholar
[9]
J.S. Plante, K. Tadakuma, L.M. DeVita, D.F. Kacher, J.R. Roebuck, S.P. DiMaio, F.A. Jolesz, S. Dubowsky, An MRI-Compatible Needle Manipulator Concept Based on Elastically Averaged Dielectric Elastomer Actuators for Prostate Cancer Treatment: An Accuracy and MR-Compatibility Evaluation in Phantoms, Journal of Medical Devices 3 (2009).
DOI: 10.1115/1.3191729
Google Scholar
[10]
P. Lochmatter, G. Kovacs, Design and characterization of an actively deformable shell structure composed of interlinked active hinge segments driven by soft dielectric EAPs, Sensors and Actuators A 141 (2008) 588–597.
DOI: 10.1016/j.sna.2007.10.030
Google Scholar
[11]
G. Kovacs, P. Lochmatter, M. Wissler, An arm wrestling robot driven by dielectric elastomer actuators, SMART MATERIALS AND STRUCTURES 16 (2007) S306–S317.
DOI: 10.1088/0964-1726/16/2/s16
Google Scholar
[12]
M. Randazzo, M. Fumagalli, G. Metta, G. Sandini, Closed loop control of a rotational joint driven by two antagonistic dielectric elastomer actuators, Proceedings of SPIE Electroactive Polymer Actuators and Devices, San Diego, California, March 8-11, 2010, 7642 (2010).
DOI: 10.1117/12.847372
Google Scholar
[13]
Y.L. Zhu, H.M. Wang, D.B. Zhao, J. Zhao, Energy conversion analysis and performance research on a cone-type dielectric electroactive polymer generator, SMART MATERIALS AND STRUCTURES 20 (2011) 115022.
DOI: 10.1088/0964-1726/20/11/115022
Google Scholar
[14]
C.C. Lin, F.C. Chen, Improved CMAC neural network control scheme, Electronics Letters 35(2) (1999) 157-158.
DOI: 10.1049/el:19990083
Google Scholar