Topology Analysis of a Metabolic Functional Gene Transcriptional Regulatory Network of Escherichia Coli

Article Preview

Abstract:

Under the perspectives of network science and systems biology, the characterizations of transcriptional regulatory networks (TRNs) beyond the context of model organisms have been studied extensively. However, little is still known about the structure and functionality of TRNs that control metabolic physiological processes. In this study, we present a newly version of the TRN of E.coli controlling metabolism based on functional annotations from GeneProtEC and Gene Ontology (GO). We also present an exhaustive topological analysis of the metabolic transcriptional regulatory network (MTRN), focusing on the main statistical characterization describing the topological structure and the comparison with TRN. From the results in this paper we infer that TRN and MTRN have very similar characteristic distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

648-653

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Carey, S.T. Smale, Transcriptional regulation in eukaryotes concepts, strategies, and techniques, Cold Spring Harbor. (2000).

Google Scholar

[2] A. Ma'ayan, Introduction to network analysis in systems biology, Science Signaling. 4(2011).

Google Scholar

[3] H. -Y. Chuang, M. Hofree, T. Ideker, A decade of systems biology, Annual Review of Cell and Developmental Biology. 26(2010) 721-744.

DOI: 10.1146/annurev-cellbio-100109-104122

Google Scholar

[4] S.B.T. de-Leon, E.H. Davidson, Modeling the dynamics of transcriptional gene regulatory networks for animal development, Developmental Biology. 325(2009) 317-328.

DOI: 10.1016/j.ydbio.2008.10.043

Google Scholar

[5] M.M. Babu, N.M. Luscombe, L. Aravind, M. Gerstein, S.A. Teichmann, Structure and evolution of transcriptional regulatory networks, Current Opinion in Structural Biology. 14(2004) 283-291.

DOI: 10.1016/j.sbi.2004.05.004

Google Scholar

[6] E.H. Davidson, J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C.H. Yuh, T. Minokawa, G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C.T. Brown, C.B. Livi, P.Y. Lee, R. Revilla, A.G. Rust, Z.J. Pan, M.J. Schilstra, P.J.C. Clarke, M.I. Arnone, L. Rowen, R.A. Cameron, D.R. McClay, L. Hood, H. Bolouri, A genomic regulatory network for development, Science. 295(2002).

DOI: 10.1126/science.1069883

Google Scholar

[7] M.M. Babu, Structure, evolution and dynamics of transcriptional regulatory networks, Biochemical Society Transactions. 38(2010) 1155-1178.

DOI: 10.1042/bst0381155

Google Scholar

[8] T.M. Kim, P.J. Park, Advances in analysis of transcriptional regulatory networks, Wiley Interdiscip Rev-Syst Biol. 3(2011) 21-35.

Google Scholar

[9] M.M. Babu, S.A. Teichmann, L. Aravind, Evolutionary dynamics of prokaryotic transcriptional regulatory networks, Journal of Molecular Biology. 358(2006) 614-633.

DOI: 10.1016/j.jmb.2006.02.019

Google Scholar

[10] M.E. Wall, Structure-function relations are subtle in genetic regulatory networks, Mathematical Biosciences. 231(2011) 61-68.

DOI: 10.1016/j.mbs.2011.02.003

Google Scholar

[11] A. Martinez-Antonio, S.C. Janga, D. Thieffry, Functional organisation of escherichia coli transcriptional regulatory network, Journal of Molecular Biology. 381(2008) 238-247.

DOI: 10.1016/j.jmb.2008.05.054

Google Scholar

[12] L. Guzman-Vargas, M. Santillan, Comparative analysis of the transcription-factor gene regulatory networks of e. Coli and s. Cerevisiae, Bmc Systems Biology. 2(2008) 13.

DOI: 10.1186/1752-0509-2-13

Google Scholar

[13] R. Dobrin, Q.K. Beg, A.L. Barabasi, Z.N. Oltvai, Aggregation of topological motifs in the escherichia coli transcriptional regulatory network, Bmc Bioinformatics. 5(2004).

Google Scholar

[14] O. Resendis-Antonio, J.A. Freyre-Gonzalez, R. Menchaca-Mendez, R.M. Gutierrez-Rios, A. Martinez-Antonio, C. Avila-Sanchez, J. Collado-Vides, Modular analysis of the transcriptional regulatory network of e-coli, Trends in Genetics. 21(2005) 16-20.

DOI: 10.1016/j.tig.2004.11.010

Google Scholar

[15] D.S. Lee, H. Rieger, Comparative study of the transcriptional regulatory networks of e-coli and yeast: Structural characteristics leading to marginal dynamic stability, J Theor Biol. 248(2007) 618-626.

DOI: 10.1016/j.jtbi.2007.07.001

Google Scholar

[16] N. Guelzim, S. Bottani, P. Bourgine, F. Kepes, Topological and causal structure of the yeast transcriptional regulatory network, Nat Genet. 31(2002) 60-63.

DOI: 10.1038/ng873

Google Scholar

[17] S.C. Janga, H. Salgado, A. Martinez-Antonio, J. Collado-Vides, Coordination logic of the sensing machinery in the transcriptional regulatory network of escherichia coli, Nucleic Acids Research. 35(2007) 6963-6972.

DOI: 10.1093/nar/gkm743

Google Scholar

[18] C. Marr, F.J. Theis, L.S. Liebovitch, M.T. Hutt, Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of escherichia coli, Plos Computational Biology. 6(2010) e1000836.

DOI: 10.1371/journal.pcbi.1000836

Google Scholar

[19] H.W. Ma, J. Buer, A.P. Zeng, Hierarchical structure and modules in the escherichia coli transcriptional regulatory network revealed by a new top-down approach, Bmc Bioinformatics. 5(2004) 199.

Google Scholar

[20] A. Martinez-Antonio, J. Collado-Vides, Identifying global regulators in transcriptional regulatory networks in bacteria, Current Opinion in Microbiology. 6(2003) 482-489.

DOI: 10.1016/j.mib.2003.09.002

Google Scholar

[21] N.D. Price, J.L. Reed, B.O. Palsson, Genome-scale models of microbial cells: Evaluating the consequences of constraints, Nat Rev Microbiol. 2(2004) 886-897.

DOI: 10.1038/nrmicro1023

Google Scholar

[22] K.J. Kauffman, P. Prakash, J.S. Edwards, Advances in flux balance analysis, Curr Opin Biotechnol. 14(2003) 491-496.

Google Scholar

[23] M.W. Covert, B.O. Palsson, Transcriptional regulation in constraints-based metabolic models of escherichia coli, J Biol Chem. 277(2002) 28058-28064.

DOI: 10.1074/jbc.m201691200

Google Scholar

[24] L.D.F. Costa, F.A. Rodrigues, G. Travieso, P.R.V. Boas, Characterization of complex networks: A survey of measurements, Advances in Physics. 56(2007) 167-242.

DOI: 10.1080/00018730601170527

Google Scholar

[25] S. Gama-Castro, H. Salgado, M. Peralta-Gil, A. Santos-Zavaleta, L. Muniz-Rascado, H. Solano-Lira, V. Jimenez-Jacinto, V. Weiss, J.S. Garcia-Sotelo, A. Lopez-Fuentes, L. Porron-Sotelo, S. Alquicira-Hernandez, A. Medina-Rivera, I. Martinez-Flores, K. Alquicira-Hernandez, R. Martinez-Adame, C. Bonavides-Martinez, J. Miranda-Rios, A.M. Huerta, A. Mendoza-Vargas, L. Collado-Torres, B. Taboada, L. Vega-Alvarado, M. Olvera, L. Olvera, R. Grande, E. Morett, J. Collado-Vides, Regulondb version 7. 0: Transcriptional regulation of escherichia coli k-12 integrated within genetic sensory response units (gensor units), Nucleic Acids Research. 39(2011).

DOI: 10.1093/nar/gkq1110

Google Scholar

[26] H. Salgado, I. Martinez-Flores, A. Lopez-Fuentes, J.S. Garcia-Sotelo, L. Porron-Sotelo, H. Solano, L. Muniz-Rascado, J. Collado-Vides, Extracting regulatory networks of escherichia coli from regulondb, Methods Mol Biol. 804(2012) 179-195.

DOI: 10.1007/978-1-61779-361-5_10

Google Scholar

[27] M.H. Serres, S. Goswami, M. Riley, Genprotec: An updated and improved analysis of functions of escherichia coli k-12 proteins, Nucleic Acids Research. 32(2004) D300-D302.

DOI: 10.1093/nar/gkh087

Google Scholar

[28] T.G.O. Consortium, The gene ontology: Enhancements for 2011, Nucleic Acids Res. 40(2012) D559-564.

DOI: 10.1093/nar/gkr1028

Google Scholar

[29] F.R. Blattner, G. Plunkett, 3rd, C.A. Bloch, N.T. Perna, V. Burland, M. Riley, J. Collado-Vides, J.D. Glasner, C.K. Rode, G.F. Mayhew, J. Gregor, N.W. Davis, H.A. Kirkpatrick, M.A. Goeden, D.J. Rose, B. Mau, Y. Shao, The complete genome sequence of escherichia coli k-12, Science. 277(1997).

DOI: 10.1126/science.277.5331.1453

Google Scholar

[30] Z. Du, L. Li, C.F. Chen, P.S. Yu, J.Z. Wang, G-sesame: Web tools for go-term-based gene similarity analysis and knowledge discovery, Nucleic Acids Res. 37(2009) W345-349.

DOI: 10.1093/nar/gkp463

Google Scholar

[31] J.B. Axelsen, S. Bernhardsson, M. Rosvall, K. Sneppen, A. Trusina, Degree landscapes in scale-free networks, Phys Rev E. 74(2006).

DOI: 10.1103/physreve.74.036119

Google Scholar

[32] M. Girvan, M.E.J. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences of the United States of America. 99(2002) 7821-7826.

DOI: 10.1073/pnas.122653799

Google Scholar

[33] D.J. Watts, S.H. Strogatz, Collective dynamics of small-world, networks, Nature. 393(1998) 440-442.

DOI: 10.1038/30918

Google Scholar