[1]
Fish FE. Biomimetics: determining engineering opportunities from nature. Proc SPIE Conf, San Diego CA , America, 2009, 740109.
Google Scholar
[2]
Julien Favier, Alfredo Pinelli, Ugo Piomelli. Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers, J. Comptes Rendus Mecanique. 304 (2012) 107-114.
DOI: 10.1016/j.crme.2011.11.004
Google Scholar
[3]
Tak-Sing Wong, Sung Hoon Kang, Sindy K. Y. Tang, Elizabeth J. Smythe, Benjamin D. Hatton, Alison Grinthal & Joanna Aizenberg. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, J. Nature. 477 (2011) 443-477.
DOI: 10.1038/nature10447
Google Scholar
[4]
Daniel Ebert, Bharat Bhushan, Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles, J. Journal of Colloid and Interface Science. 368(2012) 584-591.
DOI: 10.1016/j.jcis.2011.09.049
Google Scholar
[5]
Fish FE, Paul W. Weber, Mark M. Murray, and Laurens E. Howle, The Tubercles on Humpback Whales' Flippers: Application of Bio-Inspired Technology, J. Integrative and Comparative Biology. 51 (2011) 203-213.
DOI: 10.1093/icb/icr016
Google Scholar
[6]
Fish FE, Laurens E. Howle, and Mark M. Murray. Hydrodynamic flow control in marine mammals, J. Integrative and Comparative Biology. 48 (2008) 788-800.
DOI: 10.1093/icb/icn029
Google Scholar
[7]
Anish Tuteja, Wonjae Choi, Minglin Ma, Joseph M. Mabry, et al , Designing Superoleophobic Surfaces, J. Science. 318 (2007) 1618-1622.
DOI: 10.1126/science.1148326
Google Scholar
[8]
A.W. Lang, P. Motta, P. Hidalgo and M. Westcott. Bristled shark skin: a microgeometry for boundary layer control? , J. Bioinspir. Biomim. 3 (2008) 046005.
DOI: 10.1088/1748-3182/3/4/046005
Google Scholar
[9]
L.Q. Ren, Y.H. LIANG. Biological couplings: Classification And Characteristic rules, J. Science in China Series E: Technological Sciences. 52 (2009) 2791-2800.
DOI: 10.1007/s11431-009-0325-8
Google Scholar
[10]
L.Q. Ren, Y.H. LIANG. Biological couplings: Function, characteristics and implementation mode, J. Science in China Series E: Technological Sciences. 53 (2010) 379-387.
DOI: 10.1007/s11431-010-0043-2
Google Scholar
[11]
Li-mei TIAN, Lu-quan REN, Qingping LIU, Zhi-wu HAN, Jiang Xiao. The Mechanism of Drag Reduction around Bodies of Revolution Using Bionic Non-Smooth Surfaces, J. Journal of Bionic Engineering. 4 (2007) 109-116.
DOI: 10.1016/s1672-6529(07)60022-5
Google Scholar
[12]
C. C. Zhang, J. Wang, Y. G. Shang. Numerical simulation on drag reduction of revolution body through bionic riblet surface, J. Science in China Series E: Technological Sciences. 53 (2010) 2954-2959.
DOI: 10.1007/s11431-010-4140-z
Google Scholar
[13]
W. Barthlott, C. Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces, J. Planta. 202 (1997) 1-8.
DOI: 10.1007/s004250050096
Google Scholar
[14]
K. Chen, Q. P. Liu, G. H. Liao, Y. Yang, L. Q. Ren, H. X. Yang, X. Chen. The Sound Suppression Characteristics of Wing Feather of Owl (Bubo bubo), J. Journal of Bionic Engineering. 9 (2012) 192-199.
DOI: 10.1016/s1672-6529(11)60109-1
Google Scholar
[15]
L. Shi, C. C. Zhang, J. Wang, L.Q. Ren. Numerical Simulation of the Effect of Bionic Serrated Structures on the Aerodynamic Noise of a Circular Cylinder, J. Journal of Bionic Engineering. 9 (2012) 91-98.
DOI: 10.1016/s1672-6529(11)60101-7
Google Scholar
[16]
L.Q. Ren. Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines, J. China Series E: Technological Sciences. 52 (2009) 273-284.
DOI: 10.1007/s11431-009-0042-3
Google Scholar
[17]
J. Gray. Studies in Animal Locomotion. VI. The Propulsive Powers of the Dolphin, J. Exp. Biol. 13 (1936) 192-199.
Google Scholar
[18]
P.R. Bandyopadhyay, C. Henoch, J.D. Hrubes, et al., Experiments on the effects of aging on compliant coating drag reduction, J. Physics of Fluids. 17 (2005) 1-9.
DOI: 10.1063/1.2008997
Google Scholar
[19]
Y.C. Lee, H.M. Thompson, P.H. Gaskell, Thin film flow over flexible membranes containing surface texturing: bio-inspired solutions, J. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology. 223 (2009).
DOI: 10.1243/13506501jet552
Google Scholar
[20]
H. Nagamine, K. Yamahata, H. Yoshimichi, R. Matsubara, Turbulence modification by compliant skin and strata-corneas desquamation of a swimming dolphin, J. Turbulence. 5 (2004) 1-25.
DOI: 10.1088/1468-5248/5/1/018
Google Scholar
[21]
H. Zhang, Y. Naoki, H. Yoshimichi, Changes in drag acting on an angled wavy silicon-rubber plate as a model of the skin folds of a swimming dolphin, in: Naomi Kato Ph. D, Shinji Kamimura Ph. D, Bio-Mechanisms of Swimming and Flying, Springer Japan, 2008, pp.91-102.
DOI: 10.1007/978-4-431-73380-5_8
Google Scholar
[22]
F.E. Fish, The myth and reality of Gray's paradox: implication of dolphin drag reduction for technology, J. Bioinspiration & Biomimetics. 1 (2006) R17-R25.
DOI: 10.1088/1748-3182/1/2/r01
Google Scholar
[23]
MAX O. KRAMER, Boundary layer stabilization by distributed damping, J. Journal of the American Society for Naval Engineers. 72 (1960) 25-33.
DOI: 10.1111/j.1559-3584.1960.tb02356.x
Google Scholar
[24]
K. Takashima, S. Koyama, Y. Hagiwara, Direct numerical simulation on turbulent flow around a regularly deforming film, J. Advances in Turbulence XI. 117 (2007) 662-664.
DOI: 10.1007/978-3-540-72604-3_211
Google Scholar
[25]
P.W. Carpenter, C. Davies, A.D. Lucey, Hydrodynamics and compliant walls: Does the dolphin have a secret, J. Current Science. 9 (2000) 758-765.
Google Scholar
[26]
Ryo Matsumura, Shuhei Koyama, Yoshimichi Hagiwara, Turbulent Drag Reduction by Wall Deformation Synchronized with Flow Acceleration, J. IUTAM Symposium on Computational Physics and New Perspectives in Turbulence. 4 (2008) 385-390.
DOI: 10.1007/978-1-4020-6472-2_58
Google Scholar
[27]
Takahide Endo, Ryutaro Himeno, Direct numerical simulation of turbulent flow over a compliant surface, J. Journal of Turbulence. 40 (2001) 7-11.
DOI: 10.1615/tsfp2.660
Google Scholar
[28]
M.W. Pitman, A.D. LUCEY, A deterministic viscous vortex method for grid–free CFD with moving boundary conditions, J. IASME Transactions. 1 (2004) 591–596.
Google Scholar
[29]
Zhang H, Bathe KJ. Direct and iterative computing of fluid flows fully coupled with structures. Proceedings First M.I.T. Conference on Computational Fluid and Solid Mechanics. Elsevier Science: Amsterdam, 2001, 1440–1443.
DOI: 10.1016/b978-008043944-0/50936-7
Google Scholar
[30]
W.P. Li, X.X. Yang, An experimental Study on the Drag Reduction of Compliant Walls, J. Journal of Hydrodynamics. l6, Sub (1991) 108-112.
Google Scholar