[1]
Curle N. The influence of solid boundaries upon aerodynamic sound. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955, 231, 505–514.
DOI: 10.1098/rspa.1955.0191
Google Scholar
[2]
Powell A. Theory of vortex sound. The Journal of the Acoustical Society of America, 1964, 36, 177–195.
Google Scholar
[3]
Lim H C, Lee S J. Flow control of circular cylinders with longitudinal grooved surfaces[J]. AIAA journal, 2002, 40(10): 2027-(2036).
DOI: 10.2514/2.1535
Google Scholar
[4]
Cattafesta L, Williams D, Rowley C, et al. Review of active control of flow-induced cavity resonance[J]. AIAA paper, 2003, 3567: (2003).
DOI: 10.2514/6.2003-3567
Google Scholar
[5]
Thomas F O, Kozlov A, Corke T C. Plasma actuators for cylinder flow control and noise reduction[J]. AIAA journal, 2008, 46(8): 1921-(1931).
DOI: 10.2514/1.27821
Google Scholar
[6]
Huang X, Zhang X. Plasma actuators for noise control[J]. International Journal of Aeroacoustics, 2010, 9(4): 679-704.
Google Scholar
[7]
Mitsuru I, Takehisa T. Perforated pantograph horn aeolian tone suppression mechanism. Quarterly Report of RTRI, 2004, 45, 169–174.
DOI: 10.2219/rtriqr.45.169
Google Scholar
[8]
Lei Shi, Chengchun Zhang, Jing Wang, Luquan Ren. Numerical Simulation of the Effect of Bionic Serrated Structures on the Aerodynamic Noise of a Circular Cylinder[J]. Journal of Bionic Engineering. 2012, 9(1): 91-98.
DOI: 10.1016/s1672-6529(11)60101-7
Google Scholar
[9]
King W F, Pfizenmaier E. An experimental study of sound generated by flows around cylinders of different cross-section[J]. Journal of Sound and Vibration, 2009, 328(3): 318-337.
DOI: 10.1016/j.jsv.2009.07.034
Google Scholar
[10]
Masaharu N, Tomonobu G. Aerodynamic noise reduction by pile fabrics. Fluid Dynamics Research, 2010, 42, 015003.
DOI: 10.1088/0169-5983/42/1/015003
Google Scholar
[11]
Takehisa S, Mitsuru I, Takehisa T, Takeshi K, Haruo Y. Reduction of aerodynamic noise from high-speed pantograph using porous materials. Journal of Environment and Engineering, 2010, 5, 469–484.
DOI: 10.1299/jee.5.469
Google Scholar
[12]
Takeshi S, Takehisa T, Mitsuru I and Norio A. Application of porous material to reduce aerodynamic sound from bluff bodies. Fluid Dynamics Research, 2010, 42, 015004.
DOI: 10.1088/0169-5983/42/1/015004
Google Scholar
[13]
SUEKI T, IKEDA M, TAKAISHI T. Aerodynamic noise reduction using porous materials and their application to high-speed pantographs[J]. Quarterly Report of RTRI, 2009, 50(1): 26-31.
DOI: 10.2219/rtriqr.50.26
Google Scholar
[14]
Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 1963, 91, 99–164.
DOI: 10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
Google Scholar
[15]
Ffowcs-Williams J E, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion. Proceedings of the Royal Society A, London, UK, 1969, 264, 321–342.
Google Scholar
[16]
Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation. American Institute of Aeronautics and Astronautics (AIAA) Journal, 1983, 21, 1525–1532.
DOI: 10.2514/3.8284
Google Scholar
[17]
Cantwell B, Coles C. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of Fluid Mechanics, 1983, 136, 321–374.
DOI: 10.1017/s0022112083002189
Google Scholar
[18]
Osamu I, Nozomu H. Sound generation by a two-dimensional circular cylinder in a uniform flow. Journal of Fluid Mechanics, 2002, 471, 285–314.
DOI: 10.1017/s0022112002002124
Google Scholar