[1]
A.E. Rawlings, J.P. Bramble, S.S. Staniland, Innovation through imitation: biomimetic, bioinspired and biokleptic research, Soft Matter 8 (2012) 6675-6679.
DOI: 10.1039/c2sm25385b
Google Scholar
[2]
M. Drack, I.C. Gebeshuber, Comment on Innovation through imitation: biomimetic, bioinspired and biokleptic research, by A. E. Rawlings, J. P. Bramble and S. S. Staniland, Soft Matter, 2012, 8, 6675, Soft Matter 9 (2013) 2338-2340.
DOI: 10.1039/c2sm26722e
Google Scholar
[3]
A.E. Rawlings, J.P. Bramble, S.S. Staniland, Reply to the Comment on "Innovation through imitation: Biomimetic, bioinspired and biokleptic research", by M. Drack and I. C. Gebeshuber, Soft Matter, 2013, 9, DOI: 10. 1039/c2sm26722e, Soft Matter 9 (2013).
DOI: 10.1039/c2sm27271g
Google Scholar
[4]
W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1997) 1-8.
DOI: 10.1007/s004250050096
Google Scholar
[5]
K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair, Nature 405 (2000) 681-685.
DOI: 10.1038/35015073
Google Scholar
[6]
K. Koch, A. Dommisse, W. Barthlott, Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates, Cryst. Growth Des. 6 (2006) 2571-2578.
DOI: 10.1021/cg060035w
Google Scholar
[7]
P.Y. Hsu, L. Ge, X. Li, A.Y. Stark, C. Wesdemiotis, P.H. Niewiarowski, A. Dhinojwala, Direct evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy, J. Roy. Soc. Interface 9 (2012).
DOI: 10.1098/rsif.2011.0370
Google Scholar
[8]
W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, H.F. Bohn, The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater. 22 (2010).
DOI: 10.1002/adma.200904411
Google Scholar
[9]
S.N. Gorb, Attachment devices of insect cuticle. Kluwer Academic Publishers, Dordrecht, (2001).
Google Scholar
[10]
J.M.R. Bullock, P. Drechsler, W. Federle, Comparison of smooth and hairy attachment pads in sects: friction, adhesdion and mechanisms for direction-dependence, J. Exp. Biol. 211 (2008) 3333-3343.
DOI: 10.1242/jeb.020941
Google Scholar
[11]
K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott, Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter 5 (2009) 1386-1393.
DOI: 10.1039/b818940d
Google Scholar
[12]
B. Yurdumaken, N.R. Raravikar, P.M. Ajayan, A. Dhinojwala, Synthetic gecko foot-hairs from multiwalled carbon nanotubes, Chem. Commun. (2005) 3799-3801.
DOI: 10.1039/b506047h
Google Scholar
[13]
T. Wagner, C. Neinhuis, W. Barthlott, Wettability and contaminability of insect wings as a function of their surface sculptures, Acta Zool. (Stockholm) 77 (1996) 213-225.
DOI: 10.1111/j.1463-6395.1996.tb01265.x
Google Scholar
[14]
Y. Fang, G. Sun, T.Q. Wang, Q. Cong, L.Q. Ren, The hydrophobic mechanism of non-smooth surface of butterfly wing, Chin. Sci. Bull. 52 (2007) 354-357.
DOI: 10.1007/s11434-007-0120-5
Google Scholar
[15]
Y.M. Zheng, X.F. Gao, L. Jiang, Directional adhesion of superhydrophobic butterfly wings, Soft Matter 3 (2007) 178-182.
DOI: 10.1039/b612667g
Google Scholar
[16]
X.F. Gao, L. Jiang, Water-repellent legs of water striders, Nature 432 (2004) 36.
DOI: 10.1038/432036a
Google Scholar
[17]
G.S. Watson, B.W. Cribb, J.A. Watson, Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider, Acta Biomater. 6 (2010) 4060-4064.
DOI: 10.1016/j.actbio.2010.04.016
Google Scholar
[18]
G.S. Watson, B.W. Cribb, J.A. Watson, The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing, J. Struc. Biol. 171 (2010) 44-51.
DOI: 10.1016/j.jsb.2010.03.008
Google Scholar
[19]
J.A. Watson, B.W. Cribb, H.M. Hu, G.S. Watson, A dual layer hair array of the brown lacewing: repelling water at different length scales, Biophys. J. 100 (2011) 1149-1155.
DOI: 10.1016/j.bpj.2010.12.3736
Google Scholar
[20]
G.S. Watson, B.W. Cribb, J.A. Watson, How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing, ACS Nano 4 (2010) 129-136.
DOI: 10.1021/nn900869b
Google Scholar
[21]
H.M. Hu, G.S. Watson, B.W. Cribb, J.A. Watson, Non-wetting wings and legs of the cranefly aided by fine structures of the cuticle, J. Exp. Biol. 214 (2011) 915-920.
DOI: 10.1242/jeb.051128
Google Scholar
[22]
G.S. Watson, S. Myhra, B.W. Cribb, J.A. Watson, Putative functions and functional efficiency of ordered cuticular nanoarrays on insect wings, Biophys. J. 94 (2008) 3352-3360.
DOI: 10.1529/biophysj.107.109348
Google Scholar
[23]
M.X. Sun, G.S. Watson, Y.M. Zheng, J.A. Watson, A.P. Liang, Wetting properties on nanostructured surfaces of cicada wings, J. Exp. Biol. 212 (2009) 3148-3155.
DOI: 10.1242/jeb.033373
Google Scholar
[24]
M.X. Sun, A.P. Liang, Y.M. Zheng, G.S. Watson, J.A. Watson, A study of the antireflection efficiency of natural nano-arrays of varying sizes, Bioinsp. Biomim. 6 (2011) 026003.
DOI: 10.1088/1748-3182/6/2/026003
Google Scholar
[25]
M.X. Sun, A.P. Liang, G.S. Watson, J.A. Watson, Y.M. Zheng, J. Ju, L. Jiang, Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings, PLoS One 7 (2012) e35056.
DOI: 10.1371/journal.pone.0035056
Google Scholar
[26]
S.H. Hong, J. Hwang, H. Lee, Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting, Nanotechnology 20 (2009) 385303.
DOI: 10.1088/0957-4484/20/38/385303
Google Scholar
[27]
Byun D, Hong J, Saputra, Ko JH, Lee YJ, Park HC, Byun BK, Lukes JR. Wetting characteristics of insect wing surfaces, J. Bionic Eng. 6 (2009) 63-70.
DOI: 10.1016/s1672-6529(08)60092-x
Google Scholar
[28]
X. Yao, Q. Chen, L. Xu, Q. Li, Y. Song, X. Gao, D. Quéré, L. Jiang, Bioinspired ribbed nanoneedles with robust superhydrophobicity, Adv. Funct. Mater. 20 (2010) 656-662.
DOI: 10.1002/adfm.200901775
Google Scholar
[29]
A.R. Parker, C.R. Lawrence, Water capture by a desert beetle, Nature 414 (2001) 33-34.
Google Scholar
[30]
H. Cheng, J.R. Sun, J.Q. Li, L.Q. Ren, Structure of the integumentary surface of the dung beetle Copris ochus Motschulsky and its relation to non-adherence of substrate particles, Acta Entomol. Sin. 45 (2002) 175-181.
Google Scholar
[31]
L.Q. Ren, S.Q. Deng, J.C. Wang, Z.W. Han, Design principles of the non-smooth surface of bionic plow moldboard, J. Bionic Eng. 1 (2004) 9-19.
DOI: 10.1007/bf03399450
Google Scholar
[32]
Z.D. Di, Z.X. Yang, Macro-/micro-structures of elytra, mechanical properties of the biomaterial and the coupling strength between elytra in beetles, J. Bionic Eng. 7 (2010) 6-12.
DOI: 10.1016/s1672-6529(09)60187-6
Google Scholar
[33]
A.E. Seago, P. Brady, J. Vigneron, T.D. Schultz, Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera), J. Roy. Soc. Interface 6 (2009) S165-S184.
DOI: 10.1098/rsif.2008.0354.focus
Google Scholar
[34]
C. Pang, S.M. Kim, Y. Rahmawan, K. -Y. Suh, Beetle-inspired bidirectional, asymmetric interlocking using geometry-tunable nanohairs, Appl. Mater. Inter. 4 (2012) 4225-4230.
DOI: 10.1021/am3009289
Google Scholar
[35]
C. Pang, T. Kim, W.G. Bae, D. Kang, S.M. Kim, K. -Y. Suh, Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers, Adv. Mater. 24 (2012) 475-479.
DOI: 10.1002/adma.201103022
Google Scholar
[36]
R. Ege, On the respiratory function of the air stores carried by some aquatic insects (Corixidae, Dytiscidae and Notonecta), Z. Allg. Physiol. 17 (1915) 81-124.
Google Scholar
[37]
P.S. Seymour, P.G.D. Matthews, Physical gills in diving insects and spiders: theory and experiment, J. Exp. Biol. 216 (2013) 164-170.
DOI: 10.1242/jeb.070276
Google Scholar
[38]
O. Pedersen, T.D. Colmer, Physical gills prevent drowning of many wetland insects, spiders and plants, J. Exp. Biol. 215 (2012) 705-709.
DOI: 10.1242/jeb.065128
Google Scholar
[39]
J. Smrž, Respiration—a new function of some hydroporine elytra (Coleoptera. Dytiscidae, Hydroporinae), Acta Entomol. Bohemoslov. 78 (1981) 209-215.
Google Scholar
[40]
S. Kehl, K. Dettner, Surviving submerged-setal tracheal gills for gas exchange in adult rheophilic diving beetles, J. Morphol. 270 (2009) 1348-1355.
DOI: 10.1002/jmor.10762
Google Scholar
[41]
B.L. Madsen, Submersion respiration in small diving beetles (Dytiscidae), Aquat. Insect. 34 (2012) 57-76.
DOI: 10.1080/01650424.2012.643026
Google Scholar
[42]
M.W. Holdgate, The wetting of insect cuticles by water, J. Exp. Biol. 2 (1955) 591-617.
Google Scholar
[43]
M.X. Sun, A.P. Liang, G.S. Watson, J.A. Watson, Y.M. Zheng, L. Jiang, The compound microstructures and chemistry of beetle elytra and their effect on the wettability, PLoS One 7 (2012) e0046710.
Google Scholar