Microstructure and Wettability on the Elytral Surface of Aquatic Beetle

Article Preview

Abstract:

The microstructures on elytral surface of aquatic beetles belonging to Hydrophilidae and Dytiscidae were observed under an environment scanning microscope, and the wettabilities were determined with an optical contact angle meter. The results show the elytral surfaces are relatively smooth compared to the structures of other insects such as the butterfly wing scales or cicada wing protrusions. They exhibit a polygonal structuring with grooves and pores being the main constituent units. The contact angles (CAs) range from 47.1o to 82.1o. The advancing and receding angles were measured by injecting into and withdrawing a small amount of water on the most hydrophilic (with a contact angle of 47.1o) and hydrophobic (with a contact angle of 82.1o) elytral surfaces, which illustrates the vital role of three-phase contact line (TCL) in the wetting mechanism of aquatic beetle elytral surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

731-740

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.E. Rawlings, J.P. Bramble, S.S. Staniland, Innovation through imitation: biomimetic, bioinspired and biokleptic research, Soft Matter 8 (2012) 6675-6679.

DOI: 10.1039/c2sm25385b

Google Scholar

[2] M. Drack, I.C. Gebeshuber, Comment on Innovation through imitation: biomimetic, bioinspired and biokleptic research, by A. E. Rawlings, J. P. Bramble and S. S. Staniland, Soft Matter, 2012, 8, 6675, Soft Matter 9 (2013) 2338-2340.

DOI: 10.1039/c2sm26722e

Google Scholar

[3] A.E. Rawlings, J.P. Bramble, S.S. Staniland, Reply to the Comment on "Innovation through imitation: Biomimetic, bioinspired and biokleptic research", by M. Drack and I. C. Gebeshuber, Soft Matter, 2013, 9, DOI: 10. 1039/c2sm26722e, Soft Matter 9 (2013).

DOI: 10.1039/c2sm27271g

Google Scholar

[4] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1997) 1-8.

DOI: 10.1007/s004250050096

Google Scholar

[5] K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Adhesive force of a single gecko foot-hair, Nature 405 (2000) 681-685.

DOI: 10.1038/35015073

Google Scholar

[6] K. Koch, A. Dommisse, W. Barthlott, Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates, Cryst. Growth Des. 6 (2006) 2571-2578.

DOI: 10.1021/cg060035w

Google Scholar

[7] P.Y. Hsu, L. Ge, X. Li, A.Y. Stark, C. Wesdemiotis, P.H. Niewiarowski, A. Dhinojwala, Direct evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy, J. Roy. Soc. Interface 9 (2012).

DOI: 10.1098/rsif.2011.0370

Google Scholar

[8] W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, H.F. Bohn, The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater. 22 (2010).

DOI: 10.1002/adma.200904411

Google Scholar

[9] S.N. Gorb, Attachment devices of insect cuticle. Kluwer Academic Publishers, Dordrecht, (2001).

Google Scholar

[10] J.M.R. Bullock, P. Drechsler, W. Federle, Comparison of smooth and hairy attachment pads in sects: friction, adhesdion and mechanisms for direction-dependence, J. Exp. Biol. 211 (2008) 3333-3343.

DOI: 10.1242/jeb.020941

Google Scholar

[11] K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott, Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter 5 (2009) 1386-1393.

DOI: 10.1039/b818940d

Google Scholar

[12] B. Yurdumaken, N.R. Raravikar, P.M. Ajayan, A. Dhinojwala, Synthetic gecko foot-hairs from multiwalled carbon nanotubes, Chem. Commun. (2005) 3799-3801.

DOI: 10.1039/b506047h

Google Scholar

[13] T. Wagner, C. Neinhuis, W. Barthlott, Wettability and contaminability of insect wings as a function of their surface sculptures, Acta Zool. (Stockholm) 77 (1996) 213-225.

DOI: 10.1111/j.1463-6395.1996.tb01265.x

Google Scholar

[14] Y. Fang, G. Sun, T.Q. Wang, Q. Cong, L.Q. Ren, The hydrophobic mechanism of non-smooth surface of butterfly wing, Chin. Sci. Bull. 52 (2007) 354-357.

DOI: 10.1007/s11434-007-0120-5

Google Scholar

[15] Y.M. Zheng, X.F. Gao, L. Jiang, Directional adhesion of superhydrophobic butterfly wings, Soft Matter 3 (2007) 178-182.

DOI: 10.1039/b612667g

Google Scholar

[16] X.F. Gao, L. Jiang, Water-repellent legs of water striders, Nature 432 (2004) 36.

DOI: 10.1038/432036a

Google Scholar

[17] G.S. Watson, B.W. Cribb, J.A. Watson, Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider, Acta Biomater. 6 (2010) 4060-4064.

DOI: 10.1016/j.actbio.2010.04.016

Google Scholar

[18] G.S. Watson, B.W. Cribb, J.A. Watson, The role of micro/nano channel structuring in repelling water on cuticle arrays of the lacewing, J. Struc. Biol. 171 (2010) 44-51.

DOI: 10.1016/j.jsb.2010.03.008

Google Scholar

[19] J.A. Watson, B.W. Cribb, H.M. Hu, G.S. Watson, A dual layer hair array of the brown lacewing: repelling water at different length scales, Biophys. J. 100 (2011) 1149-1155.

DOI: 10.1016/j.bpj.2010.12.3736

Google Scholar

[20] G.S. Watson, B.W. Cribb, J.A. Watson, How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing, ACS Nano 4 (2010) 129-136.

DOI: 10.1021/nn900869b

Google Scholar

[21] H.M. Hu, G.S. Watson, B.W. Cribb, J.A. Watson, Non-wetting wings and legs of the cranefly aided by fine structures of the cuticle, J. Exp. Biol. 214 (2011) 915-920.

DOI: 10.1242/jeb.051128

Google Scholar

[22] G.S. Watson, S. Myhra, B.W. Cribb, J.A. Watson, Putative functions and functional efficiency of ordered cuticular nanoarrays on insect wings, Biophys. J. 94 (2008) 3352-3360.

DOI: 10.1529/biophysj.107.109348

Google Scholar

[23] M.X. Sun, G.S. Watson, Y.M. Zheng, J.A. Watson, A.P. Liang, Wetting properties on nanostructured surfaces of cicada wings, J. Exp. Biol. 212 (2009) 3148-3155.

DOI: 10.1242/jeb.033373

Google Scholar

[24] M.X. Sun, A.P. Liang, Y.M. Zheng, G.S. Watson, J.A. Watson, A study of the antireflection efficiency of natural nano-arrays of varying sizes, Bioinsp. Biomim. 6 (2011) 026003.

DOI: 10.1088/1748-3182/6/2/026003

Google Scholar

[25] M.X. Sun, A.P. Liang, G.S. Watson, J.A. Watson, Y.M. Zheng, J. Ju, L. Jiang, Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings, PLoS One 7 (2012) e35056.

DOI: 10.1371/journal.pone.0035056

Google Scholar

[26] S.H. Hong, J. Hwang, H. Lee, Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting, Nanotechnology 20 (2009) 385303.

DOI: 10.1088/0957-4484/20/38/385303

Google Scholar

[27] Byun D, Hong J, Saputra, Ko JH, Lee YJ, Park HC, Byun BK, Lukes JR. Wetting characteristics of insect wing surfaces, J. Bionic Eng. 6 (2009) 63-70.

DOI: 10.1016/s1672-6529(08)60092-x

Google Scholar

[28] X. Yao, Q. Chen, L. Xu, Q. Li, Y. Song, X. Gao, D. Quéré, L. Jiang, Bioinspired ribbed nanoneedles with robust superhydrophobicity, Adv. Funct. Mater. 20 (2010) 656-662.

DOI: 10.1002/adfm.200901775

Google Scholar

[29] A.R. Parker, C.R. Lawrence, Water capture by a desert beetle, Nature 414 (2001) 33-34.

Google Scholar

[30] H. Cheng, J.R. Sun, J.Q. Li, L.Q. Ren, Structure of the integumentary surface of the dung beetle Copris ochus Motschulsky and its relation to non-adherence of substrate particles, Acta Entomol. Sin. 45 (2002) 175-181.

Google Scholar

[31] L.Q. Ren, S.Q. Deng, J.C. Wang, Z.W. Han, Design principles of the non-smooth surface of bionic plow moldboard, J. Bionic Eng. 1 (2004) 9-19.

DOI: 10.1007/bf03399450

Google Scholar

[32] Z.D. Di, Z.X. Yang, Macro-/micro-structures of elytra, mechanical properties of the biomaterial and the coupling strength between elytra in beetles, J. Bionic Eng. 7 (2010) 6-12.

DOI: 10.1016/s1672-6529(09)60187-6

Google Scholar

[33] A.E. Seago, P. Brady, J. Vigneron, T.D. Schultz, Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera), J. Roy. Soc. Interface 6 (2009) S165-S184.

DOI: 10.1098/rsif.2008.0354.focus

Google Scholar

[34] C. Pang, S.M. Kim, Y. Rahmawan, K. -Y. Suh, Beetle-inspired bidirectional, asymmetric interlocking using geometry-tunable nanohairs, Appl. Mater. Inter. 4 (2012) 4225-4230.

DOI: 10.1021/am3009289

Google Scholar

[35] C. Pang, T. Kim, W.G. Bae, D. Kang, S.M. Kim, K. -Y. Suh, Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers, Adv. Mater. 24 (2012) 475-479.

DOI: 10.1002/adma.201103022

Google Scholar

[36] R. Ege, On the respiratory function of the air stores carried by some aquatic insects (Corixidae, Dytiscidae and Notonecta), Z. Allg. Physiol. 17 (1915) 81-124.

Google Scholar

[37] P.S. Seymour, P.G.D. Matthews, Physical gills in diving insects and spiders: theory and experiment, J. Exp. Biol. 216 (2013) 164-170.

DOI: 10.1242/jeb.070276

Google Scholar

[38] O. Pedersen, T.D. Colmer, Physical gills prevent drowning of many wetland insects, spiders and plants, J. Exp. Biol. 215 (2012) 705-709.

DOI: 10.1242/jeb.065128

Google Scholar

[39] J. Smrž, Respiration—a new function of some hydroporine elytra (Coleoptera. Dytiscidae, Hydroporinae), Acta Entomol. Bohemoslov. 78 (1981) 209-215.

Google Scholar

[40] S. Kehl, K. Dettner, Surviving submerged-setal tracheal gills for gas exchange in adult rheophilic diving beetles, J. Morphol. 270 (2009) 1348-1355.

DOI: 10.1002/jmor.10762

Google Scholar

[41] B.L. Madsen, Submersion respiration in small diving beetles (Dytiscidae), Aquat. Insect. 34 (2012) 57-76.

DOI: 10.1080/01650424.2012.643026

Google Scholar

[42] M.W. Holdgate, The wetting of insect cuticles by water, J. Exp. Biol. 2 (1955) 591-617.

Google Scholar

[43] M.X. Sun, A.P. Liang, G.S. Watson, J.A. Watson, Y.M. Zheng, L. Jiang, The compound microstructures and chemistry of beetle elytra and their effect on the wettability, PLoS One 7 (2012) e0046710.

Google Scholar