[1]
K.K. Christensen-Dalsgaarda, T. Fenchel, Complex Flagellar Motions and Swimming Patterns of the Flagellates Paraphysomonas vestita and Pteridomonas danica, Protist. 155 (2004) 79-87.
DOI: 10.1078/1434461000166
Google Scholar
[2]
O.S. Pak, S.E. Spagnolie, E. Lauga, Hydrodynamics of the double-wave structure of insect spermatozoa flagella, [2012-02-01], http: /rsif. royalsocietypublishing. org.
DOI: 10.1098/rsif.2011.0841
Google Scholar
[3]
A. Ghanbari, M. Bahrami, A Novel Swimming Microrobot Based on Artificial Cilia for Biomedical Applications, Journal Of Intelligent & Robotic Systems. 63 (2011) 399-416.
DOI: 10.1007/s10846-010-9516-6
Google Scholar
[4]
B. Chen, S. Jiang, Y. Liu, P. Yang, S. Chen, Research on the Kinematic Properties of a Sperm-Like Swimming Micro Robot, Journal of Bionic Engineering. 7 (2010) S123-S129.
DOI: 10.1016/s1672-6529(09)60225-0
Google Scholar
[5]
J. Cui, L. Hang, H. Feng, Progress on swimming mechanism of flagellar bacteria, Microbiology China. 34 (2007) 991-995.
Google Scholar
[6]
J. Edd, S. Payen, B. Rubinsky, M.L. Stoller, M. Sitti, Biomimetic propulsion for a swimming surgical micro-robot, Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2003, 2583-2588.
DOI: 10.1109/iros.2003.1249259
Google Scholar
[7]
B. Behkam, M.E. Sitti, Coli Inspired Propulsion for Swimming Microrobots, Proceedings of IMECE'04 International Mechanical Engineering Conference and R&D Exposition, Anaheim, USA, 2004, 1037-1041.
DOI: 10.1115/imece2004-59621
Google Scholar
[8]
A. Taheri, S. Orangi, A novel miniature virus-inspired swimming robot for biomedical applications, Science China Technological Sciences. 53 (2010) 2883-2895.
DOI: 10.1007/s11431-010-4126-x
Google Scholar
[9]
H. NgocSan, G. NamSeo, Y. HyeonKyu, Development of a propulsion system for a biomimetic thruster, Chinese Science Bulletin. 56 (2011) 432-438.
Google Scholar
[10]
J. Singleton, E. Diller, T. Andersen, S.E. Regnier, M. Sitti, Micro-Scale Propulsion using Multiple Flexible Artificial Flagella, Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011, 1687-1692.
DOI: 10.1109/iros.2011.6095140
Google Scholar
[11]
F. Z Temel, S. Yesilyurt, Magnetically Actuated Micro Swimming of Bio-inspired Robots in Mini Channels, Proceedings of the 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey, 2011, 342-347.
DOI: 10.1109/icmech.2011.5971307
Google Scholar
[12]
J. Gray, G.J. Hancock, The Propulsion of Sea-Urchin Spermatozoa, Journal Of Experimental Biology. (1955) 802-814.
DOI: 10.1242/jeb.32.4.802
Google Scholar
[13]
E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Swimming in Circles: Motion of Bacteria near Solid Boundaries, Biophysical Journal. 90 (2006) 400-412.
DOI: 10.1529/biophysj.105.069401
Google Scholar
[14]
B. Behkam, M. Sitti, Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots, Journal of Dynamic Systems, Measurement, and Control. 128 (2006) 36-43.
DOI: 10.1115/1.2171439
Google Scholar
[15]
G.J. Hancock, The Self-Propulsion of Microscopic Organisms through Liquids, Proceedings of the Royal Society. A (1953) 96-121.
Google Scholar