Exploiting Saliency Filters and Domain Knowledge for Saliency Estimation

Article Preview

Abstract:

Saliency estimation has become a valuable tool in image processing and raised much interest in theory and applications. Despite significant recent progress, the performance of the best available saliency estimation approaches still lags behind human visual systems. In this paper we used saliency filters and domain knowledge in photography to estimate saliency. Experiments show that our method can successfully detect the true salient content from images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

410-415

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Itti. Visual salience. Scholarpedia, 2(9): 3327, (2007).

Google Scholar

[2] A. Toet. Computational versus psychophysical image saliency: A comparative evaluation study. IEEE trans. PAMI, (2011).

Google Scholar

[3] L. Itti et al. Visual attention and target detection in cluttered natural scenes. Optical Engineering, (2001).

Google Scholar

[4] http: /www. stanford. edu/~philkr.

Google Scholar

[5] M. -M. Cheng, G. -X. Zhang et al. Global contrast based salient region detection. In CVPR, (2011).

Google Scholar

[6] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, (2010).

DOI: 10.1109/cvpr.2010.5539929

Google Scholar

[7] L. Itti. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process., (2004).

DOI: 10.1109/tip.2004.834657

Google Scholar

[8] J. Wang, J. Sun, L. Quan, X. Tang, and H. Y Shum. Picture collage. CVPR, 1: 347-354, (2006).

Google Scholar

[9] D. DeCarlo et al. Stylization and abstraction of photographs. ACM Trans. on Graphics, (2002).

Google Scholar

[10] R. Rosenholtz, A. Dorai, and R. Freeman. Do predictions of visual perception aid design. ACM Transactions on Applied Perception (TAP), (2011).

DOI: 10.1145/1870076.1870080

Google Scholar

[11] N. Parikh et al. Saliency-based image processing for retinal prostheses. J. Neural Eng. 7, (2010).

Google Scholar

[12] J. Harel et al. Graph-based visual saliency. In NIPS, pages 545–552, 2006. 2, 6.

Google Scholar

[13] C. Koch and S. Ullman. Shifts in selective visual attention: towards the underlying neural circuitry. Human neurobiology, 4(4): 219–227, 1985. 1, 2.

DOI: 10.1007/978-94-009-3833-5_5

Google Scholar

[14] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI, 20(11): 1254–1259, 1998. 2, 6.

DOI: 10.1109/34.730558

Google Scholar

[15] T. Liu, J. Sun, N. Zheng, X. Tang et al. Learning to detect a salient object. In CVPR, (2007).

Google Scholar

[16] R. Achanta et al. Frequency-tuned salient region detection. In IEEE CVPR, (2009).

Google Scholar

[17] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In IEEE CVPR, (2007).

Google Scholar

[18] N. Murray, M. Vanrell, X. Otazu, and C. Parraga. Saliency estimation using a non-parametric low-level vision model. In IEEE CVPR, pages 433–440, (2011).

DOI: 10.1109/cvpr.2011.5995506

Google Scholar

[19] L. Itti and P. Baldi. Bayesian surprise attracts human attention. In NIPS, 2005. 1, 2.

Google Scholar

[20] L. Duan, C. Wu, J. Miao, L. Qing, and Y. Fu. Visual saliency detection by spatially weighted dissimilarity. In CVPR, pages 473–480, 2011. 2.

DOI: 10.1109/cvpr.2011.5995676

Google Scholar

[21] Y. Niu, Y. Geng, X. Li and F. Liu. Leveraging stereopsis for saliency analysis. In CVPR, (2012).

Google Scholar

[22] F. Perazzi, P. Krähenbühl, Y. Pritch and A. Hornung. Saliency Filters: Contrast Based Filtering for Salient Region Detection. In CVPR, (2012).

DOI: 10.1109/cvpr.2012.6247743

Google Scholar

[23] R. Achanta, A. Shaji, K. Smith et al. SLIC Superpixels. Technical report, 2010. 3.

Google Scholar

[24] A. Criminisi et al. Geodesic image and video editing. ACM Trans. Graph., 29(5): 134, 2010. 3.

Google Scholar

[25] Y. -F. Ma and H. Zhang. Contrast-based image attention analysis by using fuzzy growing. In ACM Multimedia, pages 374–381, 2003. 2, 3, 6.

Google Scholar

[26] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional filtering using the permutohedral lattice. Comput. Graph. Forum, 29(2): 753–762, 2010. 3, 4, 5.

DOI: 10.1111/j.1467-8659.2009.01645.x

Google Scholar

[27] T. Kadir and M. Brady. Saliency, scale and image description. International Journal of Computer Vision, 45(2): 83–105, 2001. 3.

Google Scholar

[28] C. David. The basic composition skills. Digital camera. 2011. 3.

Google Scholar

[29] X. -Y. Peng. Photographic composition elements and skills analyse. Social science discipline research. 2011. 6.

Google Scholar

[30] J. Dolson et al. Upsampling range data in dynamic environments. In CVPR 2010. 5.

Google Scholar

[31] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. 8th Int'l Conf. Computer Vision, volume 2, pages 416–423, July 2001. 5, 7.

DOI: 10.1109/iccv.2001.937655

Google Scholar