[1]
R. C. Koeller, Application of fractional calculus to the theory of viscoelasticity, Journal of Aookied Mechanics, Vol. 51 (1984), p.299.
Google Scholar
[2]
T. T. Hartley, C. F. Lorenzo and H. K. Qammer, Chaos in a fractional order Chua system, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 42 (1995), p.485.
DOI: 10.1109/81.404062
Google Scholar
[3]
I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Physical Review Letters, Vol. 91 (2003), p.034101.
DOI: 10.1103/physrevlett.96.199902
Google Scholar
[4]
X. Wang, M. Wang, Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos, Vol. 17 (2007), pp.033106-1.
DOI: 10.1063/1.2755420
Google Scholar
[5]
R. J. Lu, C. X. Liu, Realization of fractional-order Liu chaotic system by circuit, Chinese Physics B, Vol. 16 (2007), p.1586.
DOI: 10.1088/1009-1963/16/6/016
Google Scholar
[6]
P. W. H. Deng, C. P. Li, The evolution of chaotic dynamics for fractional unified system, Physics Letters A, Vol. 372, p.401.
Google Scholar
[7]
C. X. Liu, J. J. Lu, A novel fractional-order hyperchaotic system and its circuit realization, International Journal of Modern Physics B, Vol. 24(10) (2010), p.1299.
DOI: 10.1142/s0217979210053707
Google Scholar
[8]
L. Liu, C. X. Liu and Y. B. Zhang, Experimental verification of a four-dimensional Chua's system and its fractional order chaotic attractors, International Journal of Bifurcation and Chaos, Vol. 19 (2009). p.2473.
DOI: 10.1142/s0218127409024256
Google Scholar
[9]
L. Liu, D. L. Liang and C. X. Liu, Nonlinear state observer design for projective synchronization of fractional-order permanent magnet synchronous motor, International Journal of Modern Physics B, Vol. 26 (2012). pp.1250166-1.
DOI: 10.1142/s0217979212501664
Google Scholar