Correlation between RFID Network Planning (RNP) Parameters and Particle Swarm Optimization (PSO) Solutions

Article Preview

Abstract:

Particle Swarm Optimization (PSO) algorithm is often used for solving RFID Network Planning (RNP) problems. However, the direct correlation between RNP parameters (coordinates and power settings of RFID readers) and PSO solutions is rarely shown. This is due to the fact that most researches done in this field focus more on the development of new variants of PSO and the optimization result. For that reason, this paper tends to investigate the correlation between RNP parameters and PSO solutions. One of RNP objectives (Optimal Tag Coverage) is taken as an example. The formula of optimal tag coverage is elaborated in order to expose the allocation of RNP parameters in the formula. In addition, a representation system for embedding RNP parameters in PSO solution is explained. This paper can also serves as an early guideline for solving RNP problems using PSO algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1245-1249

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Qiang, L. Yu, Y. Yiping, and Y. Wenshneg, Genetic Approach for Network Planning in the RFID Systems, " in Intelligent Systems Design and Applications, 2006. ISDA , 06. Sixth International Conference on, 2006, pp.567-572.

DOI: 10.1109/isda.2006.253899

Google Scholar

[2] H. Chen and Y. Zhu, RFID networks planning using evolutionary algorithms and swarm intelligence, 2008, pp.1-4.

Google Scholar

[3] I. Bhattacharya and U. K. Roy, Optimal placement of readers in an RFID network using particle swarm optimization, International Journal of Computer Networks & Communications, vol. 2, pp.225-234, (2010).

DOI: 10.5121/ijcnc.2010.2615

Google Scholar

[4] H. Chen, Y. Zhu, K. Hu, and T. Ku, RFID network planning using a multi-swarm optimizer, Journal of Network and Computer Applications, vol. 34, pp.888-901, (2011).

DOI: 10.1016/j.jnca.2010.04.004

Google Scholar

[5] H. Chen, Y. Zhu, and K. Hu, Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning, Applied Soft Computing, vol. 10, pp.539-547, (2010).

DOI: 10.1016/j.asoc.2009.08.023

Google Scholar

[6] S. Chiu, Design of Passive Tag RFID Readers, in RFID Systems: Research Trends and Challenges, M. Bolic, et al., Eds., ed United Kingdom: Intel Corporation, 2010, pp.129-153.

DOI: 10.1002/9780470665251.ch5

Google Scholar

[7] S. Ahson and M. Ilyas, RFID handbook: applications, technology, security, and privacy: CRC, (2008).

DOI: 10.1201/9781420055009

Google Scholar

[8] O. Poole, Basic radio: principles and technology (paper), (1998).

Google Scholar

[9] Intermec, Intermec System Manual: Intermec RFID: Intermec Technologies Corporation, (2005).

DOI: 10.1016/s1464-2859(03)00314-6

Google Scholar

[10] Y. Bard, Nonlinear parameter estimation vol. 477: Academic Press New York, (1974).

Google Scholar

[11] P. Venkataraman, Applied Optimization with MATLAB Programming, Second Edition ed. New Jersey: John Wiley & Sons, Inc., (2009).

Google Scholar

[12] P. V. Nikitin and K. Rao, Gain measurement of antennas using RFID, in Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on, 2011, pp.1012-1015.

DOI: 10.1109/aps.2011.5996450

Google Scholar

[13] D. M. Dobkin, The RF in RFID: passive UHF RFID in practice: Newnes, (2008).

Google Scholar

[14] A. W. M. Raji, H. Rahmat, I. Kamis, M. M. Talib, M. N. Mohamad, and O. C. Tiong, Geometri Koordinat Lanjutan, in Matematik Lanjutan, M. Z. Bahak, Ed., ed Johor Bahru: Universiti Teknologi Malaysia, 2002, pp.92-133.

Google Scholar

[15] E. C. Jones and C. A. Chung, RFID in logistics: a practical introduction: CRC, (2007).

Google Scholar

[16] J. Kennedy and R. Eberhart, Particle swarm optimization, in Neural Networks, 1995. Proceedings., IEEE International Conference on, 1995, pp.1942-1948 vol. 4.

Google Scholar

[17] S. Luke, Essentials of Metaheuristics, First Edition (Rev C) ed.: George Mason University, (2012).

Google Scholar

[18] Y. Shi and R. Eberhart, A modified particle swarm optimizer, in Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, 1998, pp.69-73.

DOI: 10.1109/icec.1998.699146

Google Scholar

[19] V. S. Ghomsheh, M. A. Shoorehdeli, and M. Teshnehlab, Training ANFIS structure with modified PSO algorithm, " in Control & Automation, 2007. MED, 07. Mediterranean Conference on, 2007, pp.1-6.

DOI: 10.1109/med.2007.4433927

Google Scholar

[20] F. Van den Bergh and A. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences, vol. 176, pp.937-971, (2006).

DOI: 10.1016/j.ins.2005.02.003

Google Scholar