Lumped Components Modeling of Double Pass Solar Collector with Porous Matrixes

Article Preview

Abstract:

In this report, the modeling and simulation of a double pass solar air absorber was carried out using combination of Simscape and Simulink modeling tools. The solar system air mass flow rate and the porous media were critically investigated by using local weather data of Seri Iskandar, Perak, Malaysia. Optimal inlet air flow rate of 0.034kgm-2s-1 was obtained and one of the packed beds, sandstone extended the thermal transfer period of solar collector system by 1150s which displayed good agreement with the reported model and experimental outcomes. The results obtained have shown that it is a promising alternative tool for solar thermal experimentation modeling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-220

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A. Kalogirou, Solar thermal collectors and applications, Progress in Energy and Combustion Science, vol. 30, pp.231-295, (2004).

DOI: 10.1016/j.pecs.2004.02.001

Google Scholar

[2] M. Baritto, and J. Bracamonte, A dimentionless model for the outlet temperature of a nonisothermal flat solar collector for air heating, Solar Energy, vol. 86, pp.647-653, (2012).

DOI: 10.1016/j.solener.2011.11.009

Google Scholar

[3] T. Khatib, A. Mohamed, and K. Sopian, Review of solar modeling techniques, Renewable and Sustainable Energy Reviews, vol. 16, pp.2864-2869, (2012).

DOI: 10.1016/j.rser.2012.01.064

Google Scholar

[4] J.A. Duffie and W.A. Beckman, Solar Engineering of Thermal Processes, 3rd Ed., John Wiley and Son Inc., p.264, 425-449, (2006).

Google Scholar

[5] W. Kong, Z Wang, Xing Li, Xin Li, and Ning Xiao, Theoretical analysis and experimental verification of a new dynamic test method for solar collectors, Solar Energy, vol. 86, pp.398-406, (2012).

DOI: 10.1016/j.solener.2011.10.011

Google Scholar

[6] Y.A. Cengel, Heat transfer: a practical approach, 2nd ed., McGraw-Hill Companies, Inc., p.592, (2003).

Google Scholar

[7] W. Kong, Z. Wang, J. Fan, P. Bacher, B. Perers, Z. Chen, S. Furbo, An improved dynamic test method for solar collectors, Solar Energy, vol. 86, pp.1838-1848, (2012).

DOI: 10.1016/j.solener.2012.03.002

Google Scholar

[8] J. Vestlund, M. Rönnelid, J. Dalenbäck, Thermal performance of gas-filled flat plate solar collectors, Solar Energy, vol. 83, pp.896-904, (2009).

DOI: 10.1016/j.solener.2008.12.005

Google Scholar

[9] M.J. Khan, and M.T. Iqbal, Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system, Renewable Energy, vol. 30, pp.421-439, (2005).

DOI: 10.1016/j.renene.2004.05.013

Google Scholar

[10] J. Brusher, MathWorks Inc., private communication, March, (2013).

Google Scholar

[11] G. N. Tiwari, Solar energy fundermentals, design, modelling and applications, Alpha science International LTD., p.212, (2002).

Google Scholar

[12] S.P. Sukhatme, Solar energy principle of thermal collection and storage, 2nd ed., Tata McGraw-Hill Publishing Company Limited, p.176, 264, (1996).

Google Scholar

[13] K. Sopian, M.A. Alghoul, E.M. Alfegi, M.Y. Sulaiman and E.A. Musa, Evaluation of thermal efficiency of double-pass solar collector with porous –nonporous media, Renewable Energy, vol. 34, pp.640-645, (2009).

DOI: 10.1016/j.renene.2008.05.027

Google Scholar

[14] J.R. Howell, R. Siegel, and M.P. Mengüç, Thermal radiation heat transfer, 5th ed., CRC press Taylor and Francis Group, pp.337-420, (2011).

Google Scholar

[15] A. Bejan, Convective heat transfer, 3rd ed., John Wiley and Sons, pp.1-29, (2004).

Google Scholar

[16] S. T. Karris, Introduction to simulink with engineering applications, Orchard Publications, pp.2-2, (2006).

Google Scholar

[17] F. Aghbalou, F. Badia, J. Illa, Exergetic optimization of solar collector and thermal energy storage system, Heat and Mass Transfer, vol. 49, pp.1255-1263, (2006).

DOI: 10.1016/j.ijheatmasstransfer.2005.10.014

Google Scholar

[18] S.O. Enibe, Performance of a natural circulation solar air heating system with phase change material energy storage, Renewable Energy, vol. 27, pp.69-86, (2002).

DOI: 10.1016/s0960-1481(01)00173-2

Google Scholar

[19] M. Selmi, M.J. Al-Khawaja, A. Marafia, Validation of CFD simulation for flat plate solar energy collector, Renewable Energy, vol. 33, pp.383-387, (2008).

DOI: 10.1016/j.renene.2007.02.003

Google Scholar

[20] A.A. El-Sebaii, S. Aboul-Enein, M.R.I. Ramadan, E. El-Bialy, Year round performance of double pass solar air heater with packed bed, Energy Conversion and Management, vol. 48, pp.990-1003, (2007).

DOI: 10.1016/j.enconman.2006.08.010

Google Scholar

[21] L.Y.B. Aldabbagh, F. Egeliogu, M. Ilkan, Single and double pass solar air heater with wire mesh as packing bed, Energy, vol. 35, pp.3783-3787, (2010).

DOI: 10.1016/j.energy.2010.05.028

Google Scholar

[22] K. Sopian, Supranto, W.R.W. Daud, M.Y. Othman, B. Yatim, Thermal performance of the double-pass solar collector with and without porous media, Renewable Energy, vol. 18, pp.557-564, (1999).

DOI: 10.1016/s0960-1481(99)00007-5

Google Scholar