[1]
S.U. S Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Development and Applications of Non-Newtonian Flows. ASME 231 (1995) 99-105.
Google Scholar
[2]
W. Yu, D. M France, S. S Choi & J. L Routbort, Review and Assessment of nanofluid Technology for Transportation and Other Applications. Energy System Division. Argonne: Argonne National Laboratory, (2007).
Google Scholar
[3]
D. Singh, J. Toutbort, & G. Chen, Heavy vehicle systems optimization merit review and peer evaluation. Annual Report, Argonne National Laboratory, Argonne, (2006).
Google Scholar
[4]
E. V Timofeeva, W. Yu, D.M. France, D. Singh, & J.L. Routbort, Nanofluids for heat tranfer: and engineering approach, Nanoscale Research Letters , 6 (2011), 182-189.
DOI: 10.1186/1556-276x-6-182
Google Scholar
[5]
J. A Eastman, S. S Choi, S. Li, L. J Thompson, Enhanced thermal conductivity through the development of nanofluids, Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, 457 (1997) 3-11.
Google Scholar
[6]
S.M. S Murshed, K. CLeong, C. Yang, A model for predicting the effective thermal conductivity of nanoparticles-fluid suspensions, Intl. J. Of Nanoscience 5 (2006) 23-33.
Google Scholar
[7]
S. Lee, S. Choi, S. Li, & J. A Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transfer , (1999) 280-289.
DOI: 10.1115/1.2825978
Google Scholar
[8]
Y. Xuan, and Q. Li, Heat transfer enhancement of nanofluids, Int. J Heat Fluid Flow 21 (2000), 58-64.
DOI: 10.1016/s0142-727x(99)00067-3
Google Scholar
[9]
X. Wang, X. Xu, S.U. S Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Therm Phys Heat Transfer 13 (1999), 474-80.
Google Scholar
[10]
H. A Mintsa, G. Roy, C. T Nguyen, & D. Doucet, New temperature dependent thermal conductivity data for water-based naofluids. International Journal of Thermal Sciences , (2009) 363-371.
DOI: 10.1016/j.ijthermalsci.2008.03.009
Google Scholar
[11]
X. Wang, & A. S Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. of Thermal Sciences , (2007) 46, 1-19.
Google Scholar
[12]
S.K. Das, N. Putra, P. Thiesen, & W. Roetzel, W. Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transfer , 125 (2003), 567-74.
DOI: 10.1115/1.1571080
Google Scholar
[13]
S. Z Heris, S. G Etemad, M.S. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Intl. Communications in Heat & Mass Transfer 33 (2006) 529-535.
DOI: 10.1016/j.icheatmasstransfer.2006.01.005
Google Scholar
[14]
Y. Xuan, & Q. Li. Investigation on convective heat transfer and flow features of nanofluids. ASME J Heat Transfer (2003) , 125, 151-5.
DOI: 10.1115/1.1532008
Google Scholar
[15]
D. Wen & Y. Ding, Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J of Heat & Mass Transfer , 47 (2006), 5182.
DOI: 10.1016/j.ijheatmasstransfer.2004.07.012
Google Scholar
[16]
C. Nguyen, G. Roy, C. Gauthier, & N. Galanis, Heat transfer enhancement using Al2O3-water nanofluid for an electronic cooling system. Appl Thermal Eng 27(2007), 1501.
DOI: 10.1016/j.applthermaleng.2006.09.028
Google Scholar
[17]
S. M Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, M.S. Jamnani, Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators, International Comm in Heat and Mass Transfer 38 (2011).
DOI: 10.1016/j.icheatmasstransfer.2011.07.001
Google Scholar
[18]
S.P. Jang, S.U. S Choi, Effects of various parameters on nanofluid thermal conductivity, Journal of Heat Transfer, 129 (2007) 617-623.
DOI: 10.1115/1.2712475
Google Scholar
[19]
H. E Patel, T. Sundarajan, K. S Das, An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids, J Nanopart Research 12 (2010), 1015-1031.
DOI: 10.1007/s11051-009-9658-2
Google Scholar