Effect of NH3 on Structural and Optical Properties of SiO2-CuO Core-Shell Nanostructure

Article Preview

Abstract:

CuO nanoparticles at ca. 20-50 nm were successfully coated on monodispersed silica spheres prepared by modified sol-gel method. A renewable palm oil based decyl-alcohol (C10) was employed as nonsurfactant surface modifier prior to coating with CuO. Various amounts of ammonia (NH3) (0-1 ml) was as catalyst during the modification process to study the effect in homogeneous deposition of CuO on silica surfaces. The homogeneous depositions of CuO on silica were achieved with the addition of 0.9 ml of NH3. The optical absorption peak and energy band gap (Eg) values were at ca. 1.8-2.18 eV suitable for semiconductor and optical sensor materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

813-818

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.N.R. Kishorer, and P. Jeevanandam, Journal of Alloys and Compounds 522 (2012) 51-62.

Google Scholar

[2] S. Kalele, R. Dey, N. Hebalkar, J. Urban, S.W. Gosavi and S.K. Kulkarni, Indian Ecademy of Science 65 (2005) 787-791.

DOI: 10.1007/bf02704076

Google Scholar

[3] H.L. Xia and F.Q. Tang, J. Phys. Chem. B 107 (2003) 9175-9178.

Google Scholar

[4] S. Son, S.H. Hwang, C. Kim, J.Y. Yun and J. Jang, ACS Appl. Mater. Interfaces 5 (2013) 4815-4820.

Google Scholar

[5] Z.J. Jiang and C.Y. Liu: J. Phys. Chem. B Vol. 107 (2003) 12411-12415.

Google Scholar

[6] R.A. Caruso and M. Antonietti, Chem. Mater. 13 (2001) 3272-3282.

Google Scholar

[7] K. Han, Z. Zhao, Z. Xiang, C. Wang, J. Zhang and B. Yang, Mater. Lett. 61 (2007) 363-368.

Google Scholar

[8] M.A. Salim, H. Misran, S.Z. Othman, N.N.H. Shah, N.A.A. Razak and A. Manap, IOP Conf. Sciences: Earthand Environmental Science 16 (2013) 012054.

DOI: 10.1088/1755-1315/16/1/012054

Google Scholar

[9] H. Misran, R. Singh and M. A. Yarmo, Micropor. & Mesopor. Mater. 112 (2008) 243-253.

Google Scholar

[10] H. Misran, M. A. Yarmo and S. Ramesh, Ceram. Inter. 39 (2013) 931-940.

Google Scholar

[11] M.A. Salim, H. Misran, S.Z. Othman, N.N.H. Shah, N.A.A. Razak and H. Abdullah, 3rd International Conference on Photonics, IEEE (2012) 159-162.

Google Scholar

[12] T.X. Wang, S.H. Xu and F.X. Yang, Powder Technology 28 (2012) 128-130.

Google Scholar

[13] L. Wei, S. Ye, Y. Tian, Y. Xie, Y. Chen, Journal of Crystal Growth 311 (2009) 3359-3363.

Google Scholar

[14] C. Deng, H. Hu, W. Zhu, C. Han and G. Shao, Mater. Lett. 65 (2011) 575-578.

Google Scholar

[15] Y.H. Kim, D.K. Lee, H.G. Cha, C.W. Kim, Y.K. Kang and Y.S. Kang, J. Phys. Chem. B 110 (2006) 24923-24928.

Google Scholar