[1]
M. J. Brown, A. J. Sutton, P. R. Bell, R. D. Sayers., A Meta Analysis of 50 Years of Ruptured Abdominal Aortic Aneurysm Repair. Br J Surg (2002). 89. p: 714-730.
DOI: 10.1046/j.1365-2168.2002.02122.x
Google Scholar
[2]
C. Basciano, C. Kleinstreuer, S. Hyun, and E. A. Finol., A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms. Annals of Biomedics Engineering, 2011. 39(7): p.2010-(2026).
DOI: 10.1007/s10439-011-0285-6
Google Scholar
[3]
Liang-Der Jou and Michel E. Mawad., Hemodynamic effect of Neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Elsevier-Science Direct, 2011. 33: pp.573-580.
DOI: 10.1016/j.medengphy.2010.12.013
Google Scholar
[4]
J. R. Blake, W. J. Easson, and P. R. Hoskins., A Dual Phantom System for Validation of Velocity Measurements in Stenosis Models Under Steady Flow. Elsevier Journal Ultrasound in Medical and Biology. 2009. 35(9): pp.1510-1524.
DOI: 10.1016/j.ultrasmedbio.2009.03.019
Google Scholar
[5]
P. K. Singh, A. Marzo and B. Howard., Effects of Smoking and Hypertension on Wall Shear Stress and Oscillatory Shear Index at The Site of Intracranial Aneurysm Formation. Clinical Nuerology and Neurosurgery. 2010. 112: pp.306-313.
DOI: 10.1016/j.clineuro.2009.12.018
Google Scholar
[6]
Harvey Ho, Jian Wu and P. Hunter., Blood Flow Simulation in a Giant Intracranial Aneurysm and Its Validation by Digital Subtraction Angiography. Springer science. (2011).
DOI: 10.1007/978-1-4419-9619-0_3
Google Scholar
[7]
B. Luo, X. Yang, S. Wang, H. Li, J. Chen, H. Yu, Y. Zhang, Y. Zhang, S. Mu, Z. Liu and G. Ding., High Shear Stress and Flow Velocity in Partially Occluded Aneurysms Prone to Recanalization . Journal of American Heart Association, 2011. 42: pp.745-753.
DOI: 10.1161/strokeaha.110.593517
Google Scholar
[8]
G. J. Isaksen, Y. Bazilevs, T. Kvamsdal, Y. Zhang, J. H. Kaspersen, K. Waterloo, B. Romner and T. Ingebrigtsen., Determination of Wall Tension in Cerberal Artery Aneurysms by Numerical Simulation. Journal of American Heart Association, 2008. 39: pp.3172-3178.
DOI: 10.1161/strokeaha.107.503698
Google Scholar
[9]
A. G. Radaelli, L. Augsburger, J. R. Cebral, M. Ohta, D. A. Rufenacht, R. Balossino, G. Benndorf, D. R. Hose, A. Marzo, R. Metcalfe, P. Mortier, F. Mut, P. Reymond, L. Socci, B. Verhegghe and A. F. Frangi., Reprodicibility of Haemodynamical Simulations in a Subject-Spesific Stented Aneurysm Model . Journal of Biomechanics Elsevier, 2008. 41: p.2069-(2081).
DOI: 10.1016/j.jbiomech.2008.04.035
Google Scholar
[10]
V. L. Rayz, L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida and D. Saloner., Numerical Modelling of the Flow in Intracranial Aneurysms : Prediction of Regions Prone to Thrombus Formation . Journal of Biomedical Engineering, 2008. 36: pp.1793-1804.
DOI: 10.1007/s10439-008-9561-5
Google Scholar
[11]
G. J. Sheard., Flow Dynamics and Wall Shear Stress Variation in a Fusiform Aneurysm. Journal Eng Math (2009). 64. p: 379-390.
DOI: 10.1007/s10665-008-9261-z
Google Scholar
[12]
J. P. McGarry, B. P. O'Donnell, P. E. McHugh and J. G. McGarry., Analysis of the Mechanical Performance of a Cardiovascular Stent Design Based on Micromechanical Modelling. Computational Materials Science Elsevier, 2004. 31: pp.421-438.
DOI: 10.1016/j.commatsci.2004.05.001
Google Scholar
[13]
S. O' Callaghan, M. Walsh and T. McGloughlin., Numerical modelling of Newtonian and non- Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. science direct elsevier 2006. 28: pp.70-74.
DOI: 10.1016/j.medengphy.2005.04.001
Google Scholar
[14]
P. R. Hoskins and D. Hardman., three-dimensional imaging and computational modelling for estimation of wall stresses in arteries. British Journal of Radiology, 2009. 82: p. S3-S17.
DOI: 10.1259/bjr/96847348
Google Scholar
[15]
D. Elad and S. Einav., Physical and Flow Properties of Blood. 2004, Tel Aviv.
Google Scholar
[16]
S. Petkova, A. Hossain, J. Naser and E. Palombo., CFD Modelling of Blood Flow in Portal Vein Hypertension With and Without Thrombosis. Conference on CFD in the Minerals and Process Industries. (2003).
Google Scholar
[17]
K. V. Sendstad, K. A. Mardal, M. Mortensen, B. A. P. Reif and H. P. Langtangen., Direct Numerical Simulation of Transitional Flow in a Patient-Spesific Intracranial Aneurysm. Journal of Biomechanics Elsevier, 2011. 44: pp.2826-2832.
DOI: 10.1016/j.jbiomech.2011.08.015
Google Scholar