Numerical Simulation to Investigate the Effect of Non Newtonian Properties of Blood on Wall Shear Stress in Diseased Artery

Article Preview

Abstract:

Wall Shear Stress (WSS) in the artery is one of the indicators for brain artery disease progression. WSS is proportional to the viscosity and shear rate of the flowing fluid. In this study, WSS of cerebral artery with aneurysm was predicted using Computational Fluid Dynamics (CFD). The effect of non-Newtonian properties of blood will be studied by comparing Power law model with Newtonian model. Based on the results, maximum value of WSS is 150 Pa for Newtonian model and for Power Law model is 24 Pa. Newtonian model was found overpredicted the WSS resulted from Power Law.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

789-795

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Brown, A. J. Sutton, P. R. Bell, R. D. Sayers., A Meta Analysis of 50 Years of Ruptured Abdominal Aortic Aneurysm Repair. Br J Surg (2002). 89. p: 714-730.

DOI: 10.1046/j.1365-2168.2002.02122.x

Google Scholar

[2] C. Basciano, C. Kleinstreuer, S. Hyun, and E. A. Finol., A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms. Annals of Biomedics Engineering, 2011. 39(7): p.2010-(2026).

DOI: 10.1007/s10439-011-0285-6

Google Scholar

[3] Liang-Der Jou and Michel E. Mawad., Hemodynamic effect of Neuroform stent on intimal hyperplasia and thrombus formation in a carotid aneurysm. Elsevier-Science Direct, 2011. 33: pp.573-580.

DOI: 10.1016/j.medengphy.2010.12.013

Google Scholar

[4] J. R. Blake, W. J. Easson, and P. R. Hoskins., A Dual Phantom System for Validation of Velocity Measurements in Stenosis Models Under Steady Flow. Elsevier Journal Ultrasound in Medical and Biology. 2009. 35(9): pp.1510-1524.

DOI: 10.1016/j.ultrasmedbio.2009.03.019

Google Scholar

[5] P. K. Singh, A. Marzo and B. Howard., Effects of Smoking and Hypertension on Wall Shear Stress and Oscillatory Shear Index at The Site of Intracranial Aneurysm Formation. Clinical Nuerology and Neurosurgery. 2010. 112: pp.306-313.

DOI: 10.1016/j.clineuro.2009.12.018

Google Scholar

[6] Harvey Ho, Jian Wu and P. Hunter., Blood Flow Simulation in a Giant Intracranial Aneurysm and Its Validation by Digital Subtraction Angiography. Springer science. (2011).

DOI: 10.1007/978-1-4419-9619-0_3

Google Scholar

[7] B. Luo, X. Yang, S. Wang, H. Li, J. Chen, H. Yu, Y. Zhang, Y. Zhang, S. Mu, Z. Liu and G. Ding., High Shear Stress and Flow Velocity in Partially Occluded Aneurysms Prone to Recanalization . Journal of American Heart Association, 2011. 42: pp.745-753.

DOI: 10.1161/strokeaha.110.593517

Google Scholar

[8] G. J. Isaksen, Y. Bazilevs, T. Kvamsdal, Y. Zhang, J. H. Kaspersen, K. Waterloo, B. Romner and T. Ingebrigtsen., Determination of Wall Tension in Cerberal Artery Aneurysms by Numerical Simulation. Journal of American Heart Association, 2008. 39: pp.3172-3178.

DOI: 10.1161/strokeaha.107.503698

Google Scholar

[9] A. G. Radaelli, L. Augsburger, J. R. Cebral, M. Ohta, D. A. Rufenacht, R. Balossino, G. Benndorf, D. R. Hose, A. Marzo, R. Metcalfe, P. Mortier, F. Mut, P. Reymond, L. Socci, B. Verhegghe and A. F. Frangi., Reprodicibility of Haemodynamical Simulations in a Subject-Spesific Stented Aneurysm Model . Journal of Biomechanics Elsevier, 2008. 41: p.2069-(2081).

DOI: 10.1016/j.jbiomech.2008.04.035

Google Scholar

[10] V. L. Rayz, L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida and D. Saloner., Numerical Modelling of the Flow in Intracranial Aneurysms : Prediction of Regions Prone to Thrombus Formation . Journal of Biomedical Engineering, 2008. 36: pp.1793-1804.

DOI: 10.1007/s10439-008-9561-5

Google Scholar

[11] G. J. Sheard., Flow Dynamics and Wall Shear Stress Variation in a Fusiform Aneurysm. Journal Eng Math (2009). 64. p: 379-390.

DOI: 10.1007/s10665-008-9261-z

Google Scholar

[12] J. P. McGarry, B. P. O'Donnell, P. E. McHugh and J. G. McGarry., Analysis of the Mechanical Performance of a Cardiovascular Stent Design Based on Micromechanical Modelling. Computational Materials Science Elsevier, 2004. 31: pp.421-438.

DOI: 10.1016/j.commatsci.2004.05.001

Google Scholar

[13] S. O' Callaghan, M. Walsh and T. McGloughlin., Numerical modelling of Newtonian and non- Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. science direct elsevier 2006. 28: pp.70-74.

DOI: 10.1016/j.medengphy.2005.04.001

Google Scholar

[14] P. R. Hoskins and D. Hardman., three-dimensional imaging and computational modelling for estimation of wall stresses in arteries. British Journal of Radiology, 2009. 82: p. S3-S17.

DOI: 10.1259/bjr/96847348

Google Scholar

[15] D. Elad and S. Einav., Physical and Flow Properties of Blood. 2004, Tel Aviv.

Google Scholar

[16] S. Petkova, A. Hossain, J. Naser and E. Palombo., CFD Modelling of Blood Flow in Portal Vein Hypertension With and Without Thrombosis. Conference on CFD in the Minerals and Process Industries. (2003).

Google Scholar

[17] K. V. Sendstad, K. A. Mardal, M. Mortensen, B. A. P. Reif and H. P. Langtangen., Direct Numerical Simulation of Transitional Flow in a Patient-Spesific Intracranial Aneurysm. Journal of Biomechanics Elsevier, 2011. 44: pp.2826-2832.

DOI: 10.1016/j.jbiomech.2011.08.015

Google Scholar