[1]
M. Safiudin, M. Z. Jumaat, M. A. Salam and R. Hashim, Utilization of Solid Wastes in Construction Materials, International Journal of the Physical Sciences. 5 (13) (2010) 1952-(1963).
Google Scholar
[2]
S. Dhanapandian and B. Gnanavel, An Investigation on the Effect of Incorporation of Granite and Marble Wastes in the Production of Bricks, ARPN Journal of Engineering and Applied Sciences. 4 (9) (2009) 46-53.
Google Scholar
[3]
V. Sangrutsamee, P. Srichandr and N. Poolthong, Re-Pulped Waste Paper-Based Composite Building Materials with Low Thermal Conductivity, Journal of Asian Architecture and Building Engineering. 11 (1) (2012) 147-151.
DOI: 10.3130/jaabe.11.147
Google Scholar
[4]
I. Demir, M. S. Baspinar and M. Orhan, Utilization of kraft pulp production residues in clay brick production, Building and Environment, 40 (2005) 1533-1537.
DOI: 10.1016/j.buildenv.2004.11.021
Google Scholar
[5]
J. Folaranmi, Effect of Additives on the Thermal Conductivity of Clay, Leonardo Journal of Sciences, 14 (2009) 74-77.
Google Scholar
[6]
R. Saiah, B. Perrin and L. Rigal, Improvement of Thermal Properties of Fired Clays by Introduction of Vegetable Matter, Journal of Building Physics. 34 (2) (2010) 124-142.
DOI: 10.1177/1744259109360059
Google Scholar
[7]
A. A. Kadir, A. A. Mohajerani, F. Roddick and J. Buckeridge, Density, Strength, Thermal Conductivity and Leachate Characteristics of Light-Weight Fired Clay Bricks Incorporating Cigarette Butts, International Journal of Environmental Science and Engineering. 2 (4) (2010).
DOI: 10.4028/www.scientific.net/amr.535-537.1723
Google Scholar
[8]
A. M. Othman, Experimental Investigation of the Effect of Some Insulating Materials on the Compressive Strength, Water Absorption and Thermal Conductivity of Buildings Bricks, Jordan Journal of Mechanical and Industrial Engineering. 4 (4) (2010).
Google Scholar
[9]
J. E. Oti, J. M. Kinuthia and J. Bai, Design Thermal Values for Unfired Clay Bricks, Materials and Design. 31 (2010) 104-112.
DOI: 10.1016/j.matdes.2009.07.011
Google Scholar
[10]
P. Matiasovsky and O. Korothalyova, Analysis and Modeling of Effective Thermal Conductivity of Dry Porous Building Materials.
Google Scholar
[11]
V. Bandihi and L. A. Gomze, Improvement of Insulation Properties of Conventional Bricks Products, Materials Science Forum. 589 (2008) 1-6.
Google Scholar
[12]
T. Ishigaki, W. Sugano, A. Nakanishi, M. Tateda, M. Ike and M. Fujita, The Degradability of Biodegradable Plastics in Aerobic and Anaerobic Waste Landfill Model Reactor, Chemosphere. 54 (3) (2004) 225-233.
DOI: 10.1016/s0045-6535(03)00750-1
Google Scholar
[13]
A. Ach, Biodegradable Plastics Based on Cellulose Acetate, Journal Macromol Science Pure. 30 (9) (1993) 733-740.
Google Scholar
[14]
A. A. Kadir, A. A. Mohajerani, Physico-Mechanical Properties and Leachate Analysis of Clay Fired Brick Incorporated with Cigarette Butts. In: Proceeding of International Conference on Environment. Malaysia: Universiti Sains Malaysia. (2008).
Google Scholar
[15]
A. A. Kadir, A. A. Mojerani, A Possible Utilization of Cigarette Butts in Light-Weight Fire Clay Bricks, International Journal of Environment Science and Technology. 2 (3) (2010).
Google Scholar
[16]
British Standard Institution (BS EN ISO 8990) 1996. Thermal Insulation–Determination of Steady-State Thermal Transmission Properties-Calibrated and Guarded Hot Box.
DOI: 10.3403/00916705u
Google Scholar