[1]
V. Goodship, Introduction to Plastic Recycling. UK: Rapra Technology Ltd. , (2001).
Google Scholar
[2]
C.Y. Choi, S.B. Kim, P.K. Pak, D.I. Yoo, Y.S. Chung, Effect of N-acylation on structure and properties of chitosan fibers, Carbohydrate Polymers, 68 (2007) 122–127.
DOI: 10.1016/j.carbpol.2006.07.018
Google Scholar
[3]
F.S. Kittur, K.V.H. Prashanth, K.U. Sankar, R.N. Tharanathan, Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry, Carbohydrate Polymers, 49(2) (2002) 185-193.
DOI: 10.1016/s0144-8617(01)00320-4
Google Scholar
[4]
A. Lazaridou, & C.G. Biliaderis, Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition, Carbohydrate Polymers, 48(2) (2002) 179-190.
DOI: 10.1016/s0144-8617(01)00261-2
Google Scholar
[5]
N.V. Majeti, & R. Kumar, A review of chitin and chitosan applications, Reactive and Functional Polymers, 46(1) (2000) 1-27.
Google Scholar
[6]
K.V.H. Prashanth, & R.N. Tharanathan, Chitin/chitosan: modifications and their unlimited application potential-an overview, Trends in Food Science & Technology, 18 (2007) 117-131.
DOI: 10.1016/j.tifs.2006.10.022
Google Scholar
[7]
K. Sakurai, T. Maegawa, T. Takahashi, Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends, Polymer Degradation and Stability, 41(19) (2000) 7051-7056.
DOI: 10.1016/s0032-3861(00)00067-7
Google Scholar
[8]
T. Wanjun, W. Cunxin, C. Donghua, Kinetic studies on the pyrolysis of chitin and chitosan, Polymer Degradation and Stability, 87 (2005) 389-394.
DOI: 10.1016/j.polymdegradstab.2004.08.006
Google Scholar
[9]
D. Braun, H. Cherdron, H. Ritter, Polymer Synthesis: Theory and Practice, Fundamentals, Methods, Experiments (Third ed. ). New York: Springer, (2001).
Google Scholar
[10]
G.H. Doh, S.Y. Lee, I.A. Kang, Y.T. Kong, Thermal behavior of liquefied wood polymer composites (LWPC), Composite Structures, 68(1) (2005) 103-108.
DOI: 10.1016/j.compstruct.2004.03.004
Google Scholar
[11]
G.J. Van Wylen and R.E. Sonntag (1985), Fundamentals of Classical Thermodynamics, Section 5. 5 (3rd edition), John Wiley & Sons Inc. New York, NY.
Google Scholar
[12]
X. M. Shi, J. Zhang, J. Jin, S. J. Chen, Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents, eXPRESS Polymer Letters 2(9), (2008) 623–629.
DOI: 10.3144/expresspolymlett.2008.75
Google Scholar
[13]
TA123, Determination of Polymer Crystallinity by DSC, TA Instruments, New Castle, DE.
Google Scholar
[14]
B. Kolgjini, G. Schoukens, and P. Kiekens, Three-Phase Characterization of Uniaxially Stretched Linear Low-Density Polyethylene, International Journal of Polymer Science (2011), Article ID 731708, 7 pages.
DOI: 10.1155/2011/731708
Google Scholar
[15]
W.J. Sichina, DSC as Problem Solving Tool: Measurement of Percent Crystallinity of Thermoplastics, Perkin Elmer Instruments.
Google Scholar
[16]
B. Wunderlich, Thermal Analysis, Academic Press (1990), 417-431.
Google Scholar
[17]
J.R. Barone, PolyPolyethylene/keratin fiber composites with varying polyethylene crystallinity, Composites Part A: Applied Science and Manufacturing, 36(11) (2005) 1518-1524.
DOI: 10.1016/j.compositesa.2005.03.006
Google Scholar