The Effect of Sintering Temperature and Composition for Density and Porosity of SS316L Foam

Article Preview

Abstract:

Metal foams are well-known as engineered materials with unique combination of physical and mechanical properties, yielding an attractive material for use in the aerospace industry, automotive and medical industry. In this study the method that been used to produce SS316L foam is slurry method. Slurry of stainless steel is prepared by mixing binder material such as methyl cellulose (CMC), polyethylene glycol (PEG) and distilled water by using ball milling machine. Then, the sample is sintered at different temperatures which are 1300°C, 1350°C and 1400°C. The value of porosity and density of SS316L foam are collected utilizing Archimedes method. As the result, the porosity percentage found in the range of 4.77 % to 59.80% meanwhile density value ranging from 0.402g/cm3 to 0.952g/cm3. The highest value of porosity is 59.80% at 1300°C for 40wt% SS316L, while, the highest value of density is 0.952g/cm3 at 1350°C for 60wt% SS316L. These results was followed the theory of porosity and density which are the value of porosity is inversely proportional to the density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

988-992

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ahmad, N. Muhammad, A. Muchtar, J. Shari, K. R. Jamaludin, M. H. I. Ibrahim, N. H. Mohamad and I. Murtadhahadi, Producing of Titanium Foam Using Titanium Alloy (Al3Ti) by Slurry Method (2010), Universiti Kebangsaan Malaysia.

Google Scholar

[2] H.P. Degischer and B. Kriszt, Handbook of Cellular Metals, Production, Processing and Application (2002), Wiley-VCH/Verlag GmbH, Weinheim, Germany.

Google Scholar

[3] L.J. Gibson and M.F. Ashby, Cellular Solids, Structure and Properties (1997), Cambridge University Press, Cambridge, UK.

Google Scholar

[4] M.F. Ashby, A. Evans, N. A Fleck, L.J. Gibson, J.W. Hutchinson, H.N. G Wadley, Metal Foams: A Design Gude (2000), Buterworth-Heinemann, Massachusetts.

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[5] Toru S. et. al Production of High porosity using Foamed Polysyrene Sphere.

Google Scholar

[6] Derek L, Steven l, Jefrey A. R, Andrew M, Donnamarie A, Zach S. and Bryan S, Proceeding MPIF (2008).

Google Scholar

[7] S. Davidson and M. Perkin. An investigation of density determination methods for porous materials, small samples and particulates. Measurement 46 (2013), 1766–1770.

DOI: 10.1016/j.measurement.2012.11.030

Google Scholar

[8] S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari, M. H. I. Ibrahim, K. R. Jamaludin and N. H. Mohamad Nor (2010).

Google Scholar

[9] J.P. Li, S.H. Li, K. de. Groot and P. Layrolle, Preparation and Characterization of Porous Titanium,. Key Engineering Materials (2002), 218-220, 51-54.

DOI: 10.4028/www.scientific.net/kem.218-220.51

Google Scholar

[10] S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari, M. H. I. Ibrahim, K. R. Jamaludin, N. H. Mohamad Nor and Murtadhahadi. Pencirian Titanium Berbusa yang Dihasilkan pada Suhu Pensinteran yang Berbeza Menggunakan Kaedah Buburan,. Sains Malaysiana 39(1)(2010).

DOI: 10.17576/jsm-2017-4610-37

Google Scholar