[1]
W. J. Brindley, R. A. Miller, Thermal barrier coating evaluation needs, NASA Technical Memorandum 103708, (1990).
Google Scholar
[2]
Manish Madhwal, Eric H. Jordan, Maurice Gell, Fallure mechanisms of dense vertically-cracked thermal barrier coatings, Materials Science and Engineering A, Vol 384, pp.151-161, (2004).
DOI: 10.1016/j.msea.2004.05.061
Google Scholar
[3]
A. M. Freborg, B. L. Ferguson, W. J. Brindley, G. J. Petrus, Modeling oxidation induced stresses in thermal barrier coatings, Materials Science and Engineering A, Vol. 245, 182-190, (1998).
DOI: 10.1016/s0921-5093(97)00849-6
Google Scholar
[4]
S. H. Kim, D. K. Lee, C. S. Seok, J. M. Koo, Evaluation on influence of the inserted cracks in DVC thermal barrier coating, Korean Society for Precision Engineering autumn conference collection of dissertations, 13S467, (2013).
Google Scholar
[5]
A. A. Spector, M. Ameen, and A. S. Popel, Simulation of Moter-Driven Cochlear Outer Hair Cell Electromotility, Biophysical Journal, Vol. 81, 11-24, (20010.
DOI: 10.1016/s0006-3495(01)75676-7
Google Scholar
[6]
U. S, Patent, US 5073433, Thermal Barrier Coating For Substrates and Process for Producing It, (1991).
Google Scholar
[7]
D. J Kim, The Estimation of Delamination Life of the Plasma-Sprayed Thermal Barrier Coating for Gas Turbine Blade, A doctoral dissertation of Sungkyunkwan Univ, (2009).
Google Scholar
[8]
D. S. Almeida, C. R. M. Silva, M. C. A. Nono, C. A. A Cairo, Thermal conductivity investigation of zirconia co-doped with yttria and niobia EB-PVD TBCs, Materials Science and Engineering A, Vol. 443, 60-65, (2007).
DOI: 10.1016/j.msea.2006.09.072
Google Scholar
[9]
Arnold, Steven M. Pindera, Marek-Jerzy Aboudi, Jacob, Analysis of Plasma-Sprayed Thermal Barrier Coatings With Homogeneous and Heterogeneous Bond Coats Under Spatially Uniform Cyclic Thermal Loading, NASA/TM-2003-210803, (2003).
Google Scholar
[10]
R. Viswanathan, Gas Turbine Blade Superalloy Material Property Handbook, (EPRI, 2001).
Google Scholar