Preparation of Magnetic Compositions of Diatomite

Article Preview

Abstract:

A new magnetitediatomite compositions was synthesized by co-precipitation diatomite with Fe2+ and Fe3+ in the presence of diatomite. Magnetic compositions of diatomite were investigated using XRD and SEM. Comprehensive analysis for SEM and XRD data shows that the most favorable magnetic particle including to the diatomite pores in DM-15 and DM-30. Increasing of content of maghemite in compositions causes reduction of the proportion of smectite and mica, which is associated with the destruction of the crystal lattice. Determined by the interaction between the diatomite surface and including particles of magnetite and maghemite can be hydrogen bonds between the SiOH and SiOH2+-groups of the diatomite surface and the iron (II) and iron (III) oxides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-102

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Jang, S. Hongmin, J.K. Park and E.J. Tlachac: Environ. Sci. Technology Vol. 41 (2007), pp.3322-3328.

Google Scholar

[2] I.M. Hsing, Y. Xu and W.T. Zhao: Electroanalysis Vol. 19 (2007), p.755–768.

Google Scholar

[3] A.F. Ngomsik, A. Bee, M. Draye, G. Cote and V. Cabuil: Comptes Rendus Chimie Vol. 8 (2005), p.963–970.

DOI: 10.1016/j.crci.2005.01.001

Google Scholar

[4] N.A. Booker, D. Keir, A.J. Priestley, C.B. Ritchie, D.L. Sudarmana and M.A. Woods: Water Sci. Technol. Vol. 23 (1991), p.1703–1712.

DOI: 10.2166/wst.1991.0625

Google Scholar

[5] J.D. Orbell, L. Godhino, S.W. Bigger, T.M. Nguyen and L.N. Ngeh: J. Chem. Educ. Vol. 74 (1997), p.1446–1448.

DOI: 10.1021/ed074p1446

Google Scholar

[6] L.C.A. Oliveira, R.V.R.A. Rios, J.D. Fabris, K. Sapag, V.K. Garg and R.M. Lago: Appl. Clay Sci. Vol. 22 (2003), p.169–177.

Google Scholar

[7] J. Hu, I.M.C. Lo and G. Chen: Water Sci. Technol. Vol. 50 (2004), p.139–146.

Google Scholar

[8] S.S. Banerjee and D.H. Chen: J. Hazard. Mater. Vol. 147 (2007), p.792–799.

Google Scholar

[9] A.A. Novakova, V.Y. Lanchinskaya, A.V. Volkov, T.S. Gendler, T.Y. Kiseleva, M.A. Moskvina and S.B. Zezin: J. Magn. Magn. Mater. Vol. 258 (2003), p.354–357.

DOI: 10.1016/s0304-8853(02)01062-4

Google Scholar

[10] Y.S. Kang, S. Risbud, J. Rabolt and P. Stroeve: Langmuir Vol. 12 (1996), p.4345–4349.

Google Scholar

[11] I.J. Bruce, J. Taylor, M. Todd, M.J. Davies, E. Borioni, C. Sangregorio and T. Sen: J. Magn. Magn. Mater. Vol. 284 (2004), p.145–160.

Google Scholar

[12] C. Galindo-Gonzalez, J. de Vicente, M.M. Ramos-Tejada, M.T. Lopez-Lopez, F. Gonzalez-Caballero and J.D.G. Duran: Langmuir Vol. 21 (2005), p.4410–4419.

Google Scholar

[13] M. Arruebo, R. Fernandez-Pacheco, S. Irusta, J. Arbiol, M.R. Ibarra and J. Santamaria: Nanotechnology Vol. 17 (2006), p.4057–4064.

DOI: 10.1088/0957-4484/17/16/011

Google Scholar

[14] A. Murathan and S. Benli: Fresen. Environ. Bull. Vol. 14 (2005), p.468–472.

Google Scholar

[15] Z.H. Zhang and Z.Y. Wang: J. Org. Chem. Vol. 71 (2006), p.7485–7487.

Google Scholar

[16] M. Gabrovska, J. Krstic, R. Edreva-Kardjieva, M. Stankovic and D. Jovanovic: Appl. Catal. A: Gen. Vol. 299 (2006), p.73–83.

Google Scholar

[17] P. Yuan, D.Q. Wu, H.P. He and Z.Y. Lin: Appl. Surf. Sci. Vol. 227 (2004), p.30–39.

Google Scholar

[18] O. Panasiuk, Master of Science Thesis, Stocholm (2010).

Google Scholar

[19] J. Tang, M. Myers, K.A. Bosnick, L.E. Brus: J. Phys. Chem. Vol. 107 (2002), pp.7501-7506.

Google Scholar