Semantic-Driven Information Recommendation System

Article Preview

Abstract:

Information recommendation systems is the one of the most effective tools to solve the problem of information overload. In this paper, we design SIRSCA, a semantic-driven information recommendation system under cloud architecture. SIRSCA mainly includes four modules: semantics representation of foundation data and user preference informations; indexing mechanism of massive semantic informations under cloud architecture; recommendation approaches based on semantic computation theory; and technologies of dynamic migration under cloud architecture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1226-1229

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Pazzani, D. Billsus, Content-based recommendation systems, Proc. The Adaptive Web, 2007, pp.325-341.

DOI: 10.1007/978-3-540-72079-9_10

Google Scholar

[2] J. Illig, A. Hotho, R. Jäschke, G. Stumme, A comparison of content-based tag recommendations in folksonomy systems, Proc. First International Conference on Knowledge Processing and Data Analysis, 2011, pp.136-149.

DOI: 10.1007/978-3-642-22140-8_9

Google Scholar

[3] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, Proc. ACM International Conference on World Wide Web, 2001, pp.285-295.

DOI: 10.1145/371920.372071

Google Scholar

[4] P. Adamopoulos, A. Tuzhilin, Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems, Proc. ACM International Conference on Recommender Systems, 2013, pp.173-184.

DOI: 10.1145/2507157.2507229

Google Scholar

[5] A. Albadvi, M. Shahbazi, A hybrid recommendation technique based on product category attributes, Expert Systems with Applications, 36(9), 2009, pp.11480-11488.

DOI: 10.1016/j.eswa.2009.03.046

Google Scholar

[6] J. Lucas, N. Luz, M. Moreno, R. Anacleto, A hybrid recommendation approach for a tourism system, Expert Systems with Applications, 40(9), 2012, p.3532–3550.

DOI: 10.1016/j.eswa.2012.12.061

Google Scholar

[7] L. Ding, B. Qiao, G. Wang, C. Chen, An efficient quad-tree based index structure for cloud data management, Proc. International Conference on Web-Age Information Management, 2011, pp.238-250.

DOI: 10.1007/978-3-642-23535-1_22

Google Scholar

[8] W. Che, M. Wang, C. Manning, T. Liu, Named entity recognition with bilingual constraints, Proc. International Conference on North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2013, pp.52-62.

Google Scholar