[1]
WEISS A. Computing in the cloud. ACM Networker Vol. 11 (2007), pp.18-25.
Google Scholar
[2]
M. Brantner, D. Florescuy, D. Graf, et al. Building a database on S3, in: Proceedings of the ACM SIGMOD/PODS Conference, Canada( 2008), pp.251-263.
Google Scholar
[3]
R. Buyya, C. S. Yeo and S. Venugopal. Market-oriented cloud computing: vision, hype, and reality for delivering IT service as computing utilities, in: Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications, Los Alamitos, CA, USA(2008).
DOI: 10.1109/hpcc.2008.172
Google Scholar
[4]
K. Chen, W.M. Zheng. Cloud computing: system instances and current research. Journal of Software Vol. 20 (2009), pp.1337-1348.
DOI: 10.3724/sp.j.1001.2009.03493
Google Scholar
[5]
X. Q. Gong, C. Q. Jin, X.L. Wang, et al. Data-intensive science and engineering: requirements and challenges. Chinese Journal of Computers Vol. 35 (2012), pp.1563-1578.
Google Scholar
[6]
X. F. Meng, X. Ci. Big data management: concepts, techniques and challenges. Journal of Computer Research and Development Vol. 50 (2013), pp.146-169.
Google Scholar
[7]
G. J. Li. The scientific value of big data research. China Computer Communication Vol. 8 (2012), pp.8-15.
Google Scholar
[8]
J. H. Zhao, F. H. Wen, Y. S. Xue, et al. Cloud computing: implementing an essential computing platform for future power system. Automation of Electric Power System Vol. 34 (2010), pp.1-8.
Google Scholar
[9]
R. Grossman, Y. Gu. Data mining using high performance data clouds: experients studies using sector and sphere/ACM. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, New York. USA: ACM SIGKDD (2008).
DOI: 10.1145/1401890.1402000
Google Scholar
[10]
E. Deelman and A. Chervenak. Data management challenges of data-intensive scientific workflows/IEEE Computer Society. Proccedings of the IEEE International Symposium on Cluster Computing and the Grid, May 19-22, 2008, Lyon, France. USA: IEEE CS Press, pp.687-692.
DOI: 10.1109/ccgrid.2008.24
Google Scholar
[11]
E. Deelman, J. Blythe, Y. Gil, et al. Pegasus: Mapping scientific workflows onto the grid. Grid Computing Vol. 3165 (2004), pp.131-140.
DOI: 10.1007/978-3-540-28642-4_2
Google Scholar
[12]
B. Ludanscher, I. Altintas, C. Berkley, et al. Scienticfic workflow management and the Kepler system. Concurrency and Computation: Practice and Experience Vol. 18 (2005), pp.1039-1065.
DOI: 10.1002/cpe.994
Google Scholar