Image Stereo Correspondence Method for Stereo Vision

Article Preview

Abstract:

Image stereo correspondence is the core technology of stereo vision. It has been widely studied and applied in the fields such as 3D reconstruction, vision measurement and target recognition. According to characteristics and application of stereo matching technology, the image stereo correspondence methods can be classified into three categories: local stereo correspondence, global stereo correspondence and semi-global stereo correspondence. Some image stereo correspondence solutions and problems are emphatically analyzed. Finally some future research issues on image stereo correspondence are highlighted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-341

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Seharstein and R. Szeliski: J. Computer vision Vol. 47(2002),P. 7.

Google Scholar

[2] H. Hirsehmuller: IEEE Trans. Patt. Anal. Mach. Inte. Vol. 30(2008), P. 328.

Google Scholar

[3] H. Simon, M. Sandino and K. Reinhard, In: Half-resolution semi-global stereo matching, edited by K. Dietmayer. IEEE Intelligent Vehicles Symposium, Piscataway, NJ(2011),P. 201.

DOI: 10.1109/ivs.2011.5940427

Google Scholar

[4] O. Veksler, In: Fast variable window for stereo correspondence using integral images, edited by E. Mortensen. Proc. of Computer Vision and Pattern Recognition. Madison(2003),P. 556.

DOI: 10.1109/cvpr.2003.1211403

Google Scholar

[5] T. Kanada and M. Okutomi: IEEE Trans. Patt. Anal. Mach. Inte. Vol. 16(1994), P. 920.

Google Scholar

[6] K.J. Yoon and I.S. Kweon: IEEE Trans. Patt. Anal. Mach. Inte. Vol. 28 (2006), P. 650.

Google Scholar

[7] S.J. Lu, Z.M. Tang and L.Y. Guo: J. Engi. Grap. Vol. (2009),P. 115, In Chinese.

Google Scholar

[8] R. Zabih and J. Woodfill, In: Non-Parametric local transforms for computing visual correspondence, edtied by J. Tsotsos. Proc. of Computer Vision. Vancouver(1994),P. 151.

DOI: 10.1007/bfb0028345

Google Scholar

[9] M. Samadi and M.F. Othman: Adva. in Intelligent Systems and Computing Vol. 209(2013),P. 281.

Google Scholar

[10] J.D. Simon and A. Richard: Vision Research, Vol. 40(2000),P. 1143.

Google Scholar

[11] Z.Y. Huo X.C. Zhu and T.L. Liu: J. Scientific Instrument, Vol. 32(2011),P. 819, In Chinese.

Google Scholar

[12] C.I. Kim and S.Y. Park, In: Fast Stereo Matching of Feature Links, edited by C. Shu. Proc. of 3D Imaging, Modeling and Processing, Vancouver(2011),P. 268.

DOI: 10.1109/3dimpvt.2011.41

Google Scholar

[13] H.C. Li and G.J. Zhang: J. Beijing University of Aero. and Astr. Vol. 33 (2007),P. 557, In Chinese.

Google Scholar

[14] Y.J. Xu,L.M. Du and Z.Q. Hou: ACTA ELECTRONICA SINICA, Vol. 27(1999),P. 38.

Google Scholar

[15] P. adeh,B. Serdean and V. Cristian, In: Stereo Correspondence Matching Using Multiwavelets, edited by P. Dini. Proc. of Digital Telecommunications, Athens, IARIA(2010),P. 153.

DOI: 10.1109/icdt.2010.37

Google Scholar

[16] M.A. Muquit,T. Shibahara and T. Aoki: Trans. Fundamentals of Electronics,Communications and Computer Sciences, Vol. 89(2006),P. 686.

Google Scholar

[17] H.Z. Jiang, H. j. Zhao and X.Y. Liang: Opti. and Prec. Engi. , Vol. 19(2011),P. 2520, In Chinese.

Google Scholar

[18] A.F. Bobick and S.S. Intille: J. Computer Vision, Vol. 33(1999),P. 181.

Google Scholar

[19] S.H. Zhang Z.R. Yang and L.F. Kong: J. Scientific Instrument, Vol. 31(2010),P. 2186, In Chinese.

Google Scholar

[20] M.L. Gong and Y.H. Yang: IEEE Trans. Patt. Anal. Mach. Inte. Vol. 27 (2005), P. 998.

Google Scholar

[21] C. Lei,J. Selzer and Y.H. Yang, In: Region-tree based stereo using dynamic programming optimization, edited by A. Fitzgibbon. Proc. of Comp. Vision and Patt. Reco. NY (2006),P. 378.

DOI: 10.1109/cvpr.2006.251

Google Scholar

[22] D. Arturo, X.W. Liu and E.G. Collins : IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 41 (2011),P. 183.

Google Scholar

[23] I.J. Cox and S. Roy, In: A maximum-flow formulation of the n-camera stereo correspondence Problem, edited by W. Scheirer. Proc. of Computer Vision. Washington(1998), P492.

DOI: 10.1109/iccv.1998.710763

Google Scholar

[24] Y. Deng, Q. Yang, X.Y. Lin, et al: IEEE Trans. Patt. Anal. Mach. Inte. Vol. 29 (2007), P. 1068.

Google Scholar

[25] V. Kolmogorov,R. Zabin: IEEE Trans. Patt. Anal. Mach. Inte. Vol. 26 (2004), P. 147.

Google Scholar

[26] L.T. Zhang, D.K. Qu and F. Xu: ROBOT, Vol. 32 (2010),P. 104, In Chinese.

Google Scholar

[27] S.A. Fezza, S. Ouddane, In: Fast stereo matching via graph cuts, edited by R. Sadoun. Proc. of Workshop on Systems, Signal Processing and their Applications, Canada(2011), P. 115.

DOI: 10.1109/wosspa.2011.5931427

Google Scholar

[28] Z.W. Zhou, J.Z. Fan, G. LI, J. Zhao: Opti. and Prec. Engineering, Vol. 21 (2013),P. 207, In Chinese.

Google Scholar

[29] Q. Yang,L. Wang,N. Ahuja, In: A constant-space belief propagation algorithm for stereo matching , edited by E.N. Mortensen. Proc. of Computer Vision and Pattern Recognition, Washington (2010),P. 1458.

DOI: 10.1109/cvpr.2010.5539797

Google Scholar

[30] Z.W. Zhou, J. Zhao, J. Z Fan: Opti. and Prec. Engineering, Vol. 19 (2011),P. 2774, In Chinese.

Google Scholar

[31] J. Sun N.N. Zheng H.Y. Shum: IEEE Trans. Patt. Anal. Mach. Inte. Vol. 25 (2003), P. 787.

Google Scholar

[32] Y. Wang, Z.J. Yu, L.Q. Zhu, L.Z. Yang: J. Scientific Instrument, Vol. 34 (2013),P. 1539, In Chinese.

Google Scholar