[1]
Q. Zhou, K.Q. Xia. Advances and outlook in turbulent Rayleigh-Bénard convection. Advances in Mechanics, 42(3), 231-251. (2012).
Google Scholar
[2]
S. Grossmann, D. Lohse. Multiple scaling in the ultimate regime of thermal convection. Phys. luids, 23, 045108. (2011).
DOI: 10.1063/1.3582362
Google Scholar
[3]
G. Ahlers, S. Grossmann, D. Lohse. Heat transfer and large-scale dynamics in turbulent Rayleigh -Bénard convection. Review of Modern Physics, Vol. 81, pp.503-537. (2009).
DOI: 10.1103/revmodphys.81.503
Google Scholar
[4]
G. Grotzbach. Spatial resolution requirements for direct numerical simulation of Rayleigh-Bénard convection. J. Computational Phy. 49, 241-264. (1983).
DOI: 10.1016/0021-9991(83)90125-0
Google Scholar
[5]
R. J. A. M. Stevens, R. Verzicco, D. Lohse. Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495-507. (2010).
DOI: 10.1017/s0022112009992461
Google Scholar
[6]
L.P. Kadanoff. Turbulent heat flow: Structures and scaling. Physics Today, 54(8): 34-39. (2001).
DOI: 10.1063/1.1404847
Google Scholar
[7]
W. Xu, Y. Bao. An efficient solution for 2D Rayleigh-Bénard convection using FFT. Chinese Journal of Theoretical and Applied Mechanics, 45(5): 666-671. (2013) (In Chinese).
Google Scholar
[8]
F. Matteo, G.J. Steven. The design and implementation of FFTW3. Proceedings of the IEEE, 93(2), 216-231. (2005).
Google Scholar
[9]
P.N. Swarztrauber. A direct method for the discrete solution of separable elliptic equations. SIAM Journal on Numerical Analysis, 11(6), 1136-1150. (1974).
DOI: 10.1137/0711086
Google Scholar
[10]
Q. Zhou, K.Q. Xia. Physical and geometrical properties of thermal plumes in turbulent Rayleigh –Bénard convection. New Journal of Physics, 12(7): 75006. (2010).
DOI: 10.1088/1367-2630/12/7/075006
Google Scholar