[1]
K.R. Rajagopal, R.K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid, Acta Mech. 113 (1995) 233–239.
DOI: 10.1007/bf01212645
Google Scholar
[2]
T. Hayat, A.M. Siddiqui, S. Asghar, Some simple flows of an Oldroyd-B fluid, Int. J. Eng. Sci. 39 (2001) 135–147.
Google Scholar
[3]
C. Fetecau, Corina Fetecau, The first problem of Stokes for an Oldroyd-B fluid, Int. J. Non-Linear Mech. 38 (2003) 1539–1544.
DOI: 10.1016/s0020-7462(02)00117-8
Google Scholar
[4]
C. Fetecau, Corina Fetecau, Decay of a potential vortex in an Oldroyd-B fluid, Int. J. Eng. Sci. 43 (2005) 340–351.
DOI: 10.1016/j.ijengsci.2004.08.013
Google Scholar
[5]
N. Aksel, C. Fetecau, M. Scholle, Starting solutions for some unsteady unidirectional flows of Oldroyd-B fluids, Z. Angew. Math. Phys. 57 (2006) 815–831.
DOI: 10.1007/s00033-006-0063-8
Google Scholar
[6]
C. Fetecau, S.C. Prasad, K.R. Rajagopal, A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid, Appl. Math. Model, 31 (2007) 647–654.
DOI: 10.1016/j.apm.2005.11.032
Google Scholar
[7]
C. Fetecau, T. Hayat, M. Khan, Corina Fetecau, Unsteady flow of an Oldroyd-B fluid induced by the impulsive motion of a flat plate between two side walls perpendicular to the plate, Acta Mech. 198 (2008) 21–33.
DOI: 10.1007/s00707-007-0522-0
Google Scholar
[8]
H.T. Qi, M.Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model, Acta Mech. Sinica 23 (2007) 463–469.
DOI: 10.1007/s10409-007-0093-2
Google Scholar
[9]
D.Y. Song, T.Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application, Rheol. Acta 37 (1998) 512–517.
DOI: 10.1007/s003970050138
Google Scholar
[10]
M. Khan, S. Nadeem, T. Hayat, A.M. Siddiqui, Unsteady motions of a generalized second grade fluid, Math. Comput. Modell. 41 (2005) 629–637.
DOI: 10.1016/j.mcm.2005.01.029
Google Scholar
[11]
W.C. Tan, M.Y. Xu, The impulsive motion of flat plate in a generalized second order fluid, Mech. Res. Commun. 29 (2002) 3–9.
Google Scholar
[12]
W.C. Tan, M.Y. Xu, Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model, Acta Mech. Sin. 18 (2002) 342–349.
DOI: 10.1007/bf02487786
Google Scholar
[13]
W.C. Tan, C. Fu, W. Xie, H. Cheng, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. Phys. Lett. 91 (2007) 183901.
DOI: 10.1063/1.2805208
Google Scholar
[14]
W.C. Tan, Velocity overshoot of start-up flow for a Maxwell fluid in a porous half-space, Chin. Phys. 15 (2006) 2644–2650.
DOI: 10.1088/1009-1963/15/11/031
Google Scholar
[15]
Qi, H.T., Xu, M.Y.: Unsteady flow of viscoelastic fluid with fractional Maxwell model. Mech. Res. Commun. 34 (2007) 210–212.
Google Scholar
[16]
Vieru, D., Fetecau, C., Fetecau, C.: Flow of a viscoelastic fluid with the fractional Maxwell model between two side walls perpendicular to a plate. Appl. Math. Comput. 200 (2008) 459–464.
DOI: 10.1016/j.amc.2007.11.017
Google Scholar
[17]
J. Zierep, Similarity Laws and Modeling, Marcel Dekker, New York, (1971).
Google Scholar
[18]
V.M. Soundalgekar, Stokes problem for elastico-viscous fluid, Rheol. Acta 13 (1981) 177–179.
DOI: 10.1007/bf01520872
Google Scholar
[19]
K.R. Rajagopal, T.Y. Na, On Stokes'problem for a non-Newtonian fluid, Acta Mech. 48(1983) 233–239.
DOI: 10.1007/bf01170422
Google Scholar
[20]
P. Puri, Impulsive motion of a flat plate in a Rivlin-Ericksen fluid, Rheol. Acta 23 (1984) 451-453.
DOI: 10.1007/bf01329198
Google Scholar
[21]
R. Bandelli, K.R. Rajagopal, G.P. Galdi, On some unsteady motions of fluids of second grade, Arch. Mech. 47 (4) (1995) 661–676.
Google Scholar
[22]
C. Fetecau, C. Fetecau, A new exact solution for the flow of a Maxwell fluid past an infinite plate. Int. J. Non-Linear Mech. 38 (2002) 423–427.
DOI: 10.1016/s0020-7462(01)00062-2
Google Scholar
[23]
P. M. Jordan, P. Puri, Stokes' first problem for a Rivlin-Ericksen fluid of second grade in a porous half-space, Int. J. Non Linear Mech. 39 (2003) 1019-1025.
DOI: 10.1016/s0020-7462(02)00048-3
Google Scholar
[24]
W. C. Tan, T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary, Int. J. Non Linear Mech. 40 (2005) 515-522.
DOI: 10.1016/j.ijnonlinmec.2004.07.016
Google Scholar
[25]
W. C. Tan, T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half space, Physics of fluid, 17 (2005) 023101.
DOI: 10.1063/1.1850409
Google Scholar
[26]
Bird R.B., Armstrong R.C., Hassager O., Dynamics of Polymeric Liquids, vol. 1, Wiley, New York, (1987).
Google Scholar
[27]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).
Google Scholar
[28]
M. Jamil, A. Rauf, A.A. Zafar, N.A. Khan, New exact analytical solutions for Stokes' first problem of Maxwell fluid with fractional derivative approach, Computers and Mathematics with Applications 62 (2011) 1013–1023.
DOI: 10.1016/j.camwa.2011.03.022
Google Scholar