Performance Comparison for Different Material Quantum Dot Single Intermediate Band Solar Cells

Article Preview

Abstract:

Short circuit current density (Jsc) and photoelectric conversion efficiency (η) of the different material quantum dot intermediate band solar cells (QD-IBSCs) under full concentrated sunlight were compared in this work. The QD-IBSCs were designed with QDs formed from different excitonic Bohr radius semiconductors embedding in the different wide band gap materials. Modulation doping was used to realize partially filling the IB with electrons in QD, the influence of localized states from doping on IB was also considered. The performance of these SCs was numerically simulated based on the detailed balance principle. The Jsc and η in QD-IBSCs can be adjusted via tuning the position and density of states of IB due to varying the mean size (d) and doping level of QDs in absorption region. Under the same doping level in an identical host gap material with ΔEG=2.0 eV, the Jsc and η of the Si QD-IBSCs can be optimized with 4.3 nm-QDs, however, those of CdTe devices raises while those of Ge cells drops with increasing the sizes of QD from 2 nm to 8 nm. With changing the host gap ΔEG, variation of the IB energy level EH with respect to valence band corresponding to the maximum ηm was explored, dependence of η on the operation voltage was analyzed, and the impurity effect on the η was taken into account. Present work indicates that an appropriate band gap material should be adopted to fabricate QDs to embed in suitable doped host gap one to obtain the high performance QD-IBSC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

404-411

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Antonio Luque, Antonio Martí: Phys. Rev. Lett. Vol. 78 (1997), p.5014.

Google Scholar

[2] Steven Jenks, Robert Gilmore: J. Renew. Sustain. Energy Vol. 2 (2010), p.013111.

Google Scholar

[3] Antonio Luque, Antonio Martí, Colin Stanley: Nature Photonics Vol. 6 (2012), p.146.

Google Scholar

[4] Chien-Chung Lin, Wei-Ling Liu, Ching-Yu Shih: Optics Express Vol. 19 (2011), p.16927.

Google Scholar

[5] Albert S. Lin, Weiming Wang, Jamie D. Phillips: J. Appl. Phys. Vol. 105 (2009), pp.064512-1.

Google Scholar

[6] T.S. Navruz, M. Saritas: Sol. Energy Mater. Sol. Cells Vol. 92 (2008), p.273.

Google Scholar

[7] Kefrén Sánchez, Irene Aguilera, Pablo Palacios, Perla Wahnón: Adv. Sci. Technol. Vol. 74 (2010), p.151.

Google Scholar

[8] Brown. A. S, M. A. Green: J. Appl. Phys. Vol. 96 (2004), p.2603.

Google Scholar

[9] Q. Shao, A. A. Balandin, A. I. Fedoseyev, M. Turowski: Appl. Phys. Lett. Vol. 91 (2007), pp.163503-1.

DOI: 10.1063/1.2799172

Google Scholar

[10] Deng Qingwen, Wang Xiaoliang, Yang Cuibai, Xiao hongling, Wang Cuimei, Yin haibo, Hou qifeng, Bi yang, Li Jinmin, Wang Zhanguo, Hou Xun: Chin. Phys. Lett. Vol. 28 (2011), pp.018401-1.

Google Scholar

[11] Antonio Luque, Lucas Cuadra, Antonio Martí: IEEE Trans. on Electron Devices Vol. 48 (2001), p.2394.

Google Scholar

[12] Abraham Wolcott, Daniele Gerion, Micah Visconte, Jia Sun, Adam Schwartzberg, Shaowei Chen, Jin Z. Zhang: J. Phys. Chem. B Vol. 110 (2006), p.5779.

Google Scholar

[13] E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, L. V. Goncharova: J. Appl. Phys. Vol. 111 (2012), pp.034307-1.

Google Scholar

[14] William Shockley, Hans J. Queisser: J. Appl. Phys. Vol. 32 (1961), p.510.

Google Scholar

[15] Cao Quan, Ma Zhihua, Xue Chunlai, Zuo Yuhua, Wang Qiming: Chin. Phys. B Vol. 20 (2011), pp.097103-1.

Google Scholar

[16] I. Tobías, Antonio Luque, Antonio Martí: Semicond. Sci. Technol. Vol. 26 (2011), pp.014031-1.

Google Scholar

[17] Fenq-Lin Jenq, Jiann-Ruey Chen, Bor-Yir Chen: Mater. Chem. Phys. Vol. 48 (1997), p.207.

Google Scholar

[18] Antonio Luque, Antonio Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, P. Díaz: J. Appl. Phys. Vol. 99 (2006), pp.094503-1.

Google Scholar

[19] Olga L. Lazarenkova, Alexander A. Balandin: J. Appl. Phys. Vol. 89 (2001), p.5509.

Google Scholar

[20] David Mocatta, Guy Cohen, Jonathan Schattner, Oded Millo, Eran Rabani, Uri Banin: Sci. Vol. 332 (2011), p.77.

DOI: 10.1126/science.1196321

Google Scholar

[21] Brown. A, M. A. Green: J. Appl. Phys. Vol. 92 (2002), p.1329.

Google Scholar