[1]
Friedman, L., Gertsbakh, I.B., Maximum likelihood estimation in a minimum type model with exponential and Weibull failure modes [J]. J. Amer. Statist. Assoc., 1980, 75: 460–465.
DOI: 10.2307/2287477
Google Scholar
[2]
Dinse, G.E., Nonparametric estimation for partially-complete time and type of failure data [J]. Biometrics, 1982, 38: 417-431.
DOI: 10.2307/2530455
Google Scholar
[3]
Miyakawa, M., Analysis of incomplete data in competing risks model [J]. IEEE Trans. Reliab. 1984, R-33, 293-296.
DOI: 10.1109/tr.1984.5221828
Google Scholar
[4]
Usher, J.S., Hodgson, T.J., Maximum likelihood analysis of component reliability using masked system life-test data. IEEE Trans. Reliab., R-37, 550-555, (1988).
DOI: 10.1109/24.9880
Google Scholar
[5]
Guess, F.M., Usher, J.S., Hodgson, and T.J., Estimating system and component reliabilities under partial information on cause of failure. J. Statist. Plann. Inference 29, 75–85, (1991).
DOI: 10.1016/0378-3758(92)90123-a
Google Scholar
[6]
Doganaksoy, N., Interval estimation from censored and masked system-failure data. IEEE Trans. Reliab., R-40, 280–285, (1991).
DOI: 10.1109/24.85440
Google Scholar
[7]
Lin, D.K.J., Usher, J.S., Guess, F.M., Exact maximum likelihood estimation using masked system data. IEEE Trans. Reliab. R-42, 631–635, (1993).
DOI: 10.1109/24.273596
Google Scholar
[8]
Mukhopadhyay, C., Basu, A.P., Maximum likelihood and Bayesian analysis of masked system failure data: k independent exponentials. Technical Report #517, Department of Statistics, the Ohio State University, 1993b.
Google Scholar
[9]
Usher, J.S., Weibull component reliability prediction in the presence of masked data. IEEE Trans. Reliab. R-45, 223–229, (1996).
DOI: 10.1109/24.510806
Google Scholar
[10]
S. Basu, A. Sen, and M. Banerjee, Bayesian analysis of competing risks with partially masked cause of failures, Applied Statistics, vol. 52, no. 1, p.77–93, (2003).
DOI: 10.1111/1467-9876.00390
Google Scholar
[11]
Berger, J.O., Sun, D., Bayesian analysis for the Poly–Weibull distribution. J. Amer. Statist. Assoc. 88, 1412–1418, (1993).
Google Scholar
[12]
Kuo, L., Yang, T.E., Bayesian reliability modeling for masked system lifetime data. Statist. Probab. Lett. 47, 229–241, (2000).
DOI: 10.1016/s0167-7152(99)00160-1
Google Scholar
[13]
Basu, S., Sen, A., Banerjee, M., Bayesian analysis of competing risks with partially masked cause of failure. Appl. Statist, 52, 77–93, (2003).
DOI: 10.1111/1467-9876.00390
Google Scholar
[14]
Ancha Xu. Bayesian statistical analysis for masked data [D]. East China Normal University. (2011).
Google Scholar
[15]
Tsai-Hung Fan,Wan-Lun Wang. Accelerated life test for Weibull series systems with masked data. IEEE Trans. Reliab., 60(3): 557-569, (2011).
DOI: 10.1109/tr.2011.2134270
Google Scholar
[16]
John S. Usher,Frank M. Guess. An iterative approach for estimating component reliability from masked system life data. Quality and reliability engineering international, Vol. 5, 257-261, (1989).
DOI: 10.1002/qre.4680050403
Google Scholar
[17]
D. K. J. Lin and F. M. Guess, System life data analysis with depen-dent partial knowledge on the exact cause of system failure, Micro-electronics and Reliability, Vol. 34, p.535–544, (1994).
DOI: 10.1016/0026-2714(94)90092-2
Google Scholar
[18]
I. Guttman, D. K. J. Lin, B. Reiser, and J. S. Usher, Dependent masking and system life data analysis: Bayesian inference for two-component systems, Lifetime Data Analysis, Vol. 1, No. 1, p.87–100, (1995).
DOI: 10.1007/bf00985260
Google Scholar