[1]
Sun, Z., and Ge, S. S., 2005, Switched Linear Systems Control and Design. Springer-Verlag, London.
Google Scholar
[2]
Han, Y., and Tang, H., 2007, Robust control for a class of discrete switched systems with uncertainties and delays, Proc. 26th Chinese Control Conf., Hunan, China, pp.681-684.
Google Scholar
[3]
Ibrir, S., 2008, Stability and robust stabilization of discrete-time switched systems with time-delays: LMI approach, Appl. Math. Comput., vol. 206, pp.570-578.
DOI: 10.1016/j.amc.2008.05.149
Google Scholar
[4]
Lien, C. H., Yu, K. W., Chung,Y. J., Chang, H. C., Chung, L. Y., and Chen, J. D., 2011, Exponential stability and robust control for uncertain discrete switched systems with interval time-varying delay, IMA J. Math. Control Inform., vol. 7, pp.433-444.
DOI: 10.1093/imamci/dnq035
Google Scholar
[5]
Lien, C. H., Yu, K. W., Chung, Y. J., Chang, H. C., Chung, L. Y., and Chen, J. D., 2011, Switching signal design for global exponential stability of uncertain switched nonlinear systems with time-varying delay, Nonlinear Analysis: Hybrid Systems, vol. 5, pp.10-19.
DOI: 10.1016/j.nahs.2010.08.002
Google Scholar
[6]
Liu, J., Liu,X., and Xie, W. C., 2008, Delay-dependent robust control for uncertain switched systems with time-delay, Nonlinear Analysis: Hybrid Systems, vol. 2, pp.81-95.
DOI: 10.1016/j.nahs.2007.04.001
Google Scholar
[7]
Phat, V. N., and Ratchagit, K., 2011, Stability and stabilization of switched linear discrete-time systems with interval time-varying delay, Nonlinear Analysis: Hybrid Systems, vol. 5, pp.605-612.
DOI: 10.1016/j.nahs.2011.05.006
Google Scholar
[8]
Sun, X. M., Wang, W., Liu, G. P., and Zhao, J., 2008, Stability analysis for linear switched systems with time-varying delay, IEEE Trans. Syst. Man, Cybernetics, Part B, vol. 38, p.528–533.
DOI: 10.1109/tsmcb.2007.912078
Google Scholar
[9]
Zhang, L., Shi, P., and Basin, M., 2008, Robust Stability and Stabilisation of Uncertain Switched Linear Discrete Time-Delay Systems, IET Control Theory Appl., vol. 2, pp.606-614.
DOI: 10.1049/iet-cta:20070327
Google Scholar
[10]
Sun, Y. G., Wang, L., and Xie, G., 2007, Delay-dependent robust stability and control for uncertain discrete-time switched systems with mode-dependent time delays, Appl. Math. Comput., vol. 187, pp.1228-1237.
DOI: 10.1016/j.amc.2006.09.053
Google Scholar
[11]
Xie, D., Xu, N., and Chen, X., 2008, Stabilisability and observer-based switched control design for switched linear systems, IET Control Theory Appl., vol. 2, pp.192-199.
DOI: 10.1049/iet-cta:20060502
Google Scholar
[12]
Zhai, G., Liu, D., Lmae, J., and Kobayashi, T., 2006, Lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems, IEEE Trans. Circuits Syst., vol. 53, p.152–156.
DOI: 10.1109/tcsii.2005.856033
Google Scholar
[13]
Zhang, L., Shi, P., and Basin, M., 2008, Robust stability and stabilisation of uncertain switched linear discrete time-delay systems, IET Control Theory Appl., vol. 2, pp.606-614.
DOI: 10.1049/iet-cta:20070327
Google Scholar
[14]
Zhang, W. A., and Yu, L., 2009, Stability analysis for discrete-time switched time-delay systems, Automatica, vol. 45, pp.2265-2271.
DOI: 10.1016/j.automatica.2009.05.027
Google Scholar
[15]
Gau, R. S., Lien, C. H., and Hsieh. J. G., 2011, Novel stability conditions for interval delayed neural networks with multiple time-varying delays, Int. J. Innovative Comput. Inform. Control, vol. 7, pp.433-444.
Google Scholar
[16]
Li, T., Guo, L., and Sun, C., 2007, Robust stability for neural networks with time-varying delays and linear fractional uncertainties, Neurocomputing, vol. 71, pp.421-427.
DOI: 10.1016/j.neucom.2007.08.012
Google Scholar
[17]
Gu, K., Kharitonov, V. L., and Chen, J., 2003, Stability of Time-Delay Systems, Birkhauser, Boston, Massachusetts.
Google Scholar
[18]
Yu, K. W., 2010, Further results on new stability analysis for uncertain neutral systems with time-varying delay, Int. J. Innovative Comput. Inform. Control, vol. 6, pp.1133-1140.
Google Scholar
[19]
Boyd, S., Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, Linear matrix inequalities in system and control theory. SIAM, Philadelphia, PA.
DOI: 10.1137/1.9781611970777
Google Scholar