Degree Dominance Interval Relation-Based RSM in Intuitionistic Fuzzy Decision Systems

Article Preview

Abstract:

By introducing a degree dominance relation to dominance interval intuitionistic fuzzy decision systems, we establish a degree dominance interval rough set model (RSM), which is mainly based on replacing the indiscernibility relation in classical rough set theory with the degree dominance interval relation. To simplify knowledge representation and extract some nontrivial simpler degree dominance interval intuitionistic fuzzy decision rules, we propose two attribute reductions of the degree dominance interval intuitionistic fuzzy decision systems that eliminate the redundant condition attributes that are not essential from the viewpoint of degree dominance interval intuitionistic fuzzy decision rules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-361

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Pawlak, Rough sets, International Journal of Information and Computer Sciences 11 (1982) 341-356.

Google Scholar

[2] C. Z. Wang, D. G. Chen, A short note on some properties of rough groups, Computers & Mathematics with Applications 59(1) (2010) 431-436.

DOI: 10.1016/j.camwa.2009.06.024

Google Scholar

[3] J. Y. Shyng, H. M. Shieh, G. H. Tzeng, An integration method combining Rough Set Theory with formal concept analysis for personal investment portfolios, Knowledge-Based Systems 23(6) (2010) 586-597.

DOI: 10.1016/j.knosys.2010.04.003

Google Scholar

[4] G. Xie, J. L. Zhang, K.K. Lai, Lean Yu, Variable precision rough set for group decision-making: An application, Approximation Reasoning 49(2) (2008) 331-343.

DOI: 10.1016/j.ijar.2007.04.005

Google Scholar

[5] S. Greco, B. Matarazzo, R. Slowinski, Rough sets theory for multi-criteria decision analysis. European Journal of Operational Research 129 (2001) 1-47.

DOI: 10.1016/s0377-2217(00)00167-3

Google Scholar

[6] S. Greco, B. Matarazzo, R. Slowinski, Rough sets methodology for sorting problems in presence of multiple attributes and criteria, European Journal of Operational Research 138 (2002) 247-259.

DOI: 10.1016/s0377-2217(01)00244-2

Google Scholar

[7] R. Susmaga, R. Slowinski, S. Greto, B. Matarazzo, Grneration of reducts and rules in multi-attribute and multi-criteria classification. Control and Cybernetics 29(2000) 969-988.

Google Scholar

[8] P. Fortemps, S. Greco, R. Slowinski, Multicriteria decision support using rules that represent rough-graded preference relations, European Journal of Operational Research 188 (2008) 206-223.

DOI: 10.1016/j.ejor.2007.03.036

Google Scholar

[9] W. Kotlowski, K. Dembczynski, S. Greco, R. Slowinski, Stochastic dominance-based rough set model for ordinal classification, Information Sciences 178 (2008) 4019-4037.

DOI: 10.1016/j.ins.2008.06.013

Google Scholar

[10] L.Y. Zhai, L.P. Khoo, Z.W. Zhong, A dominance-based rough set approach to Kansei Engineering in product development, Expert Systems with Applications 36 (2009) 393-402.

DOI: 10.1016/j.eswa.2007.09.041

Google Scholar

[11] J. J. H. Liou, G. H. Tzeng, A Dominance-based rough set approach to customer behavior in the airline market. Information Sciences 180(11) (2010) 2230-2238.

DOI: 10.1016/j.ins.2010.01.025

Google Scholar

[12] Q. Zhang, Z. P. Fan, D. H. Pan, A ranking approach for interval numbers in uncertain multiple attribute decision making problems. Systems Engineering-Theory and Practice 19(5) (1999) 129-133.

Google Scholar

[13] J. Wu, D. S. Huang, A Review on ranking methods of interval numbers, Systems Engineering 22(8) (2004) 1-4.

Google Scholar

[14] Z. S. Xu, Q. L. Da, Possibility degree method for ranking interval numbers and its application, Journal of Systems Engineering Engineering 18(1) (2003) 67-70.

Google Scholar

[15] Y. Leung, M. M. Fischer, W. Z. Wu, Ju-Sheng Mi, A rough set approach for the discovery of classification rules in interval-valued information systems, International Journal of Approximate Reasoning 47(2) (2008) 233-246.

DOI: 10.1016/j.ijar.2007.05.001

Google Scholar

[16] Y. H. Qian, J. Y. Liang. Chuangyin Dang, Interval ordered information systems, Computers and Mathematics with Applications 56(8) (2008) 1994-(2009).

DOI: 10.1016/j.camwa.2008.04.021

Google Scholar

[17] M. Chen, D. Q. Miao, Interval set clustering, Expert Systems with Applications, 2010(in press).

Google Scholar

[18] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986) 87-96.

DOI: 10.1016/s0165-0114(86)80034-3

Google Scholar