The M-Band Symmetric Orthogonal Scaling Function in Higher Dimensions

Article Preview

Abstract:

Wavelet theory has a key role in signal processing and image processing. In this paper, the characterization of the M-band symmetric orthogonal scaling function is obtained in higher dimensions. Then, a symmetric cardinal orthogonal scaling function is classified. The existing some results in one dimension are generalized to the case of higher dimensions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

322-325

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Daubechies, Ten Lectures on Wavelets, Vol. 61, SIAM, Philadelphia (1992).

Google Scholar

[2] S. Mallat, A theory for multiresolution signal decomposition; the wavelet representation, IEEE trans. on PAMI Vol. 11(1989), pp.674-693.

DOI: 10.1109/34.192463

Google Scholar

[3] I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. Vol. 41(1988), pp.909-996.

DOI: 10.1002/cpa.3160410705

Google Scholar

[4] C.E. Shannon, Communication in the presence of noise, Proc. IRE Vol. 37 (1949), p.10–21.

Google Scholar

[5] G.G. Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory Vol. 38 (1992), p.881–884.

DOI: 10.1109/18.119745

Google Scholar

[6] X.G. Xia, Z. Zhang, On sampling theorem, wavelet and wavelet transforms, IEEE Trans. Signal Process. Vol. 41 (1993), p.3524–3535.

DOI: 10.1109/78.258090

Google Scholar

[7] A.J.E.M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, IEEE Trans. Signal Process. Vol. 41 (1993), p.3360–3365.

DOI: 10.1109/78.258079

Google Scholar

[8] D. X. Zhou, Interpolatory orthogonal multiwavelets and refinable functions, IEEE Trans. Signal Process. Vol. 50 (2002) , pp.520-527.

DOI: 10.1109/78.984728

Google Scholar

[9] I. W. Selesnick, Interpolating multiwavelet bases and the sampling theorem, IEEE Trans. Signal Process. Vol. 47 (1999) , pp.1615-1621.

DOI: 10.1109/78.765131

Google Scholar

[10] B. Han, Symmetric orthonormal scaling functions and wavelets with dilation factor 4, Appl. Comput. Harmonic Anal. Vol. 8(1998), pp.221-247.

Google Scholar

[11] E. Belogay and Y. Wang, Construction of compactly supported symmetric scaling functions, Appl. Comput. Harmon. Anal. Vol. 6 (1999) , pp.137-150.

DOI: 10.1006/acha.1999.0265

Google Scholar

[12] S. S. Goh, Z. Y. Lim, Z. W. Shen, Symmetric and antisymmetric tight wavelet frames, Appl. Comput. Harmon. Anal. Vol. 20 (2006), pp.411-421.

DOI: 10.1016/j.acha.2005.09.006

Google Scholar

[13] G. C. Wu, D. F. Li, H. M. Xiao and Z. W. Liu, The M-band cardinal orthogonal scaling functions, Applied Mathematics and Computation Vol. 215 (2010), p.3271–3279.

DOI: 10.1016/j.amc.2009.10.015

Google Scholar