[1]
I. Daubechies, Ten Lectures on Wavelets, Vol. 61, SIAM, Philadelphia (1992).
Google Scholar
[2]
S. Mallat, A theory for multiresolution signal decomposition; the wavelet representation, IEEE trans. on PAMI Vol. 11(1989), pp.674-693.
DOI: 10.1109/34.192463
Google Scholar
[3]
I. Daubechies, Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. Vol. 41(1988), pp.909-996.
DOI: 10.1002/cpa.3160410705
Google Scholar
[4]
C.E. Shannon, Communication in the presence of noise, Proc. IRE Vol. 37 (1949), p.10–21.
Google Scholar
[5]
G.G. Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory Vol. 38 (1992), p.881–884.
DOI: 10.1109/18.119745
Google Scholar
[6]
X.G. Xia, Z. Zhang, On sampling theorem, wavelet and wavelet transforms, IEEE Trans. Signal Process. Vol. 41 (1993), p.3524–3535.
DOI: 10.1109/78.258090
Google Scholar
[7]
A.J.E.M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, IEEE Trans. Signal Process. Vol. 41 (1993), p.3360–3365.
DOI: 10.1109/78.258079
Google Scholar
[8]
D. X. Zhou, Interpolatory orthogonal multiwavelets and refinable functions, IEEE Trans. Signal Process. Vol. 50 (2002) , pp.520-527.
DOI: 10.1109/78.984728
Google Scholar
[9]
I. W. Selesnick, Interpolating multiwavelet bases and the sampling theorem, IEEE Trans. Signal Process. Vol. 47 (1999) , pp.1615-1621.
DOI: 10.1109/78.765131
Google Scholar
[10]
B. Han, Symmetric orthonormal scaling functions and wavelets with dilation factor 4, Appl. Comput. Harmonic Anal. Vol. 8(1998), pp.221-247.
Google Scholar
[11]
E. Belogay and Y. Wang, Construction of compactly supported symmetric scaling functions, Appl. Comput. Harmon. Anal. Vol. 6 (1999) , pp.137-150.
DOI: 10.1006/acha.1999.0265
Google Scholar
[12]
S. S. Goh, Z. Y. Lim, Z. W. Shen, Symmetric and antisymmetric tight wavelet frames, Appl. Comput. Harmon. Anal. Vol. 20 (2006), pp.411-421.
DOI: 10.1016/j.acha.2005.09.006
Google Scholar
[13]
G. C. Wu, D. F. Li, H. M. Xiao and Z. W. Liu, The M-band cardinal orthogonal scaling functions, Applied Mathematics and Computation Vol. 215 (2010), p.3271–3279.
DOI: 10.1016/j.amc.2009.10.015
Google Scholar