Evolutionary Structural Optimization Using Material Efficiency Grades

Article Preview

Abstract:

In the evolutionary structural optimization (ESO) using the rejection ratio, the criterion of the inefficient material removal cant generally be lowered during the optimization process because the rejection ratio cant be decreased. Owing to this, some sorts of structures in special load cases cannot be optimized smoothly; or the late optimization of an ordinary structure is terminated suddenly when the removal of material abruptly increases excessively. The paper puts forward the Evolutionary Structural Optimization using Material Efficiency Grades (ESO-MEG) in order to eliminate the unfavorable effects of the rejection ratio on the results of ESO. The ESO-MEG can determine inefficient material in a structural optimization according to the efficiency grades of each part of material, so it can adjust timely and flexibly the criterion of inefficient material removal. The research shows that the ESO-MEG is applicable to the optimization of different sorts of structures in varying sorts of load cases, so generalization of this method has a broad prospect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-321

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.M. Xie, G.P. Steven: A simple evolutionary procedure for structural optimization. Computers & structures, 1993, Vol. 49(5), pp.885-896.

DOI: 10.1016/0045-7949(93)90035-c

Google Scholar

[2] O.M. Querin, G.P. Steven, and Y.M. Xie: Evolutionary structural optimisation using an additive algorithm. Finite Elements in Analysis and Design, 2000, Vol. 34, pp.291-308.

DOI: 10.1016/s0168-874x(99)00044-x

Google Scholar

[3] O. M. Querin, G.P. Steven, and Y.M. Xie: Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering Computations. Engineering Computations, 1998, Vol. 15(8), pp.1031-1048.

DOI: 10.1108/02644409810244129

Google Scholar

[4] X. Liu, W.J. Yi, and Q.S. Li, et al : Genetic evolutionary structural optimization. Journal of Constructional Steel Research, 2008, Vol. 64, pp.305-311.

DOI: 10.1016/j.jcsr.2007.08.002

Google Scholar

[5] Y.M. Xie, P. Felicetti, and J.W. Tang: Form finding for complex structures using evolutionary structural optimization method. Design studies, 2005, Vol. 26(1), pp.55-72.

DOI: 10.1016/j.destud.2004.04.001

Google Scholar

[6] Y. Liu, F. Jin, and Q. Li: A strength-based multiple cutout optimization in composite plates using fixed grid finite element method. Composite Structures, 2006, Vol. 73(4), pp.403-412.

DOI: 10.1016/j.compstruct.2005.02.014

Google Scholar

[7] Y.M. Xie, G.P. Steven: Evolutionary structural Optimization for dynamic problems. Computer & Structures, 1996, Vol. 58(6), pp.1067-1073.

DOI: 10.1016/0045-7949(95)00235-9

Google Scholar

[8] X.Y. Yang, Y.M. Xie, and G.P. Steen: Topology optimization for frequencies using an evolutionary method. Journal Of Structural Engineering-Asce. 1999, Vol. 125(12), pp.1432-1438.

Google Scholar

[9] J. H. Rong, Y. M. Xie, and X. Y. Yang, et al : Topology Optimization Of Structures Under Dynamic Response Constraints. Journal of Sound and Vibration, 2000, Vol. 234(2), pp.177-189.

DOI: 10.1006/jsvi.1999.2874

Google Scholar

[10] Q. Li, G. P Steven, and O.M. Querin, et al. : Structural topology design with multiple thermal criteria. Engineering Computations. Structural topology design with multiple thermal criteria. Engineering Computations. 2000, Vol. 17(6), pp.715-734.

DOI: 10.1108/02644400010340642

Google Scholar

[11] R. Das, R. Jones, and Y.M. XIE. Optimal topology design of industrial structures using an evolutionary algorithm. Optim Eng , 2011 , Vol. 12, p.681–717.

DOI: 10.1007/s11081-010-9132-0

Google Scholar