Boosting the Efficiency of an 800 MW-Class Power Plant through Utilization of Low Temperature Heat of Flue Gases

Article Preview

Abstract:

This article presents an analysis on possible ways of utilizing low-temperature waste heat. If well-designed, this could contribute to increasing the efficiency of power plants without introducing many complex changes to the whole system. The main analysis focuses on the location of the regenerative heat exchanger in the facility. This could differ with varying temperatures of working media in the system. The base for investigations was a 800 MW-class power unit operating in off-design conditions and supplied with steam from an BB2400 boiler. Modifications to the model were made using commercially available software and by applying the Stodola equation and the SCC method. It allowed to determine the most suitable position for installing the low-temperature heat exchanger. Calculations for off-design conditions show that, after making some modifications to the system, both heat and electricity generation could be increased through the addition of a low-temperature heat exchanger.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

315-321

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kotowicz and Ł. Bartela, Optimisation of the connection of membrane ccs installation with a supercritical coal-fired power plant, Energy 38(1), p.118–127, (2012).

DOI: 10.1016/j.energy.2011.12.028

Google Scholar

[2] W. M. Budzianowski, An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane, International Journal of Hydrogen Energy 35(14), p.7454–7469, (2010).

DOI: 10.1016/j.ijhydene.2010.04.178

Google Scholar

[3] G. Wiciak and J. Kotowicz, Experimental stand for co2 membrane separation, Journal of Power Technologies 91(4), p.171–178, (2011).

Google Scholar

[4] M. Kawabata, O. Kurata, N. Iki, C. Fushimi, and A. Tsutsumi, Analysis of igfc with exergy recuperation and carbon dioxide separation unit, Proceedings of the ASME Turbo Expo 3, p.441–448, (2012).

DOI: 10.1115/gt2012-69999

Google Scholar

[5] K. Janusz-Szymańska, Economic efficiency of an igcc system integreted with ccs installation [efektywność ekonomiczna układu gazowo-parowego zintegrowanego ze zgazowaniem węgla oraz z instalacjaą CCS], Rynek Energii 102(5), p.24–30, (2012).

Google Scholar

[6] L. Bartela, A. Skorek-Osikowska, and J. Kotowicz, Integration of a supercritical coal-fired heat and power plant with carbon capture installation and gas turbine [integracja bloku elektrociepłowni weglowej na parametry nadkrytyczne z instalacja wychwytu dwutlenku wegla oraz turbina gazowa], Rynek Energii 100(3), p.56–62, (2012).

DOI: 10.1016/j.energy.2013.11.048

Google Scholar

[7] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, and S. Proietti, Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment, International Journal of Greenhouse Gas Control 9, p.372–384, (2012).

DOI: 10.1016/j.ijggc.2012.05.002

Google Scholar

[8] G. De Lorenzo and P. Fragiacomo, Electrical and electrical-thermal power plants with molten carbonate fuel cell/gas turbine-integrated systems, International Journal of Energy Research 36(2), p.153–165, (2012).

DOI: 10.1002/er.1788

Google Scholar

[9] G. De Lorenzo and P. Fragiacomo, A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems, International Journal of Energy Research 36(1), p.96–110, (2012).

DOI: 10.1002/er.1789

Google Scholar

[10] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong, and S. Lee, A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kw mcfc power plant, International Journal of Hydrogen Energy 37(15), p.11394–11400, (2012).

DOI: 10.1016/j.ijhydene.2012.04.135

Google Scholar

[11] J. Milewski, J. Lewandowski, and A. Miller, Reducing CO2 emissions from a coal fired power plant by using a molten carbonate fuel cell, in ASME Turbo EXPO, Proceedings of the ASME Turbo Expo 2, p.389–395, (2008).

DOI: 10.1115/gt2008-50100

Google Scholar

[12] A. Sobolewski, . Bartela, A. Skorek-Osikowska, and T. Iluk, Comparison of the economic efficiency of chp plants integrated with gazela generator [porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego gazela], Rynek Energii 102(5), p.31–37, (2012).

Google Scholar

[13] J. Milewski and J. Lewandowski, Solid oxide fuel cell fuelled by biogases, Archives of Thermodynamics 30(4), p.3–12, (2009).

Google Scholar

[14] J. Chawla, Waste heat recovery from flue gases with substantial dust load, Chemical Engineering and Processing 38, p.365–371, (1999).

DOI: 10.1016/s0255-2701(99)00027-6

Google Scholar

[15] J. Kotowicz and Ł. Bartela, The influence of economic parameters on the optimal values of the design variables of a combined cycle plant, Energy 35(2), p.911–919, (2010).

DOI: 10.1016/j.energy.2009.07.014

Google Scholar

[16] C. Butcher and B. Reddy, Second law analysis of a waste heat recovery based power generation system, International Journal of Heat and Mass Transfer 50(11), p.2355–2363, (2007).

DOI: 10.1016/j.ijheatmasstransfer.2006.10.047

Google Scholar

[17] J. -Y. San, Second-law performance of heat exchangers for waste heat recovery, Energy 35(5), p.1936–1945, (2010).

DOI: 10.1016/j.energy.2010.01.007

Google Scholar

[18] G. Descombes and S. Boudigues, Modelling of waste heat recovery for combined heat and power applications, Applied Thermal Engineering 29(13), p.2610–2616, (2009).

DOI: 10.1016/j.applthermaleng.2008.09.019

Google Scholar

[19] S. M. Lai, H. Wu, C. W. Hui, B. Hua, and G. Zhang, Flexible heat exchanger network design for low-temperature heat utilization in oil refinery, Asia-Pacific Journal of Chemical Engineering 6(5), p.713–733, (2011).

DOI: 10.1002/apj.511

Google Scholar

[20] S. Wu, X. Yuan, Y. Li, and L. Peng, Exergy transfer characteristics on low temperature heat exchangers, International Journal of Modern Physics B 21(18n19), p.3503–3505, (2007).

DOI: 10.1142/s0217979207044846

Google Scholar

[21] L. Peng, Y. -R. Li, S. -Y. Wu, and B. Lan, The analysis of exergy efficiency in the low temperature heat exchanger, International Journal of Modern Physics B 21(18n19), p.3497–3499, (2007).

DOI: 10.1142/s0217979207044822

Google Scholar

[22] S. Wu, Y. Li, and D. Zeng, Exergo-economic performance evaluation on low temperature heat exchanger, International Journal of Modern Physics B 19(01n03), p.517–519, (2005).

DOI: 10.1142/s0217979205028943

Google Scholar

[23] F. Starfelt, E. Thorin, E. Dotzauer, and J. Yan, Performance evaluation of adding ethanol production into an existing combined heat and power plant, Bioresource technology 101(2), p.613–618, (2010).

DOI: 10.1016/j.biortech.2009.07.087

Google Scholar

[24] K. Badyda, J. Milewski, and M. Wołowicz, Model of 800 MW condensation power plant unit using GateCycletm aplication, in 50 Sympozjon Modelowanie w Mechanice, (2011).

Google Scholar