The Effect of Aluminum Content on TiO2 Coated Carbon Fiber Reinforced Magnesium Alloy Composites

Article Preview

Abstract:

The interface between the reinforcement and the matrix is significant to metal matrix composites. The effect of aluminum (Al) content on interfacial microstructure and mechanical properties of TiO2 coated carbon fiber reinforced magnesium matrix composites by squeeze casting technique have been studied (C/Mg). Mg-2wt%Al and AZ91D were used as alloy matrix. The obtained results indicate that the carbon fibers in both kinds of composites are well protected by TiO2 coating, without any interfacial brittle carbide phase observed. The flexural strength of Cf-TiO2/AZ91D (1009MPa) composites is 26.5% lower than that of Cf-TiO2/Mg-2Al (1277MPa) composites. The lath-shaped precipitates of Mg17Al12 in AZ91D composites lead to the mechanical properties decrease.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. P. Diwanji and I. W. Hall, Journal of Materials Science Vol. 27 (1992) p. (2093).

Google Scholar

[2] I. W. Hall, Journal of Materials Science Vol. 26 (1991) p.776.

Google Scholar

[3] I. W. Hall, Metallography Vol. 20 (1987) p.237.

Google Scholar

[4] R. Schaller, D. Mari, S. M. dos Santos, I. Tkalcec and E. Carrer-Morelli, Materials Science and Engineering: A Vol. 521-522 (2009) p.147.

DOI: 10.1016/j.msea.2008.09.133

Google Scholar

[5] J. Bouix, M. P. Berthet, F. Bosselet, R. Favre, M. Peronnet, O. Rapaud, J. C. Viala, C. Vincent and H. Vincent, Composites Science and Technology Vol. 61 (2001) p.355.

DOI: 10.1016/s0266-3538(00)00107-x

Google Scholar

[6] N. Popovska, H. Gerhard, D. Wurm, S. Poscher, G. Emig and R. F. Singer, Materials and Design Vol. 18 (1997) p.239.

DOI: 10.1016/s0261-3069(97)00057-5

Google Scholar

[7] A. Dorner-Reisel, Y. Nishida, V. Klemm, K. Nestler, G. Marx and E. Muller, Analytical and Bioanalytical Chemistry Vol. 374 (2002) p.635.

Google Scholar

[8] H. A. Katzman, Journal of Materials Science Vol. 22 (1987) p.144.

Google Scholar

[9] R. Chen and X. Li, Composites Science and Technology Vol. 49 (1993) p.357.

Google Scholar

[10] F. Wu, J. Zhu, Y. Chen and G. D. Zhang, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing Vol. 277 (2000) p.143.

Google Scholar

[11] C. Korner, W. Schaff, M. Ottmuller and R. F. Singer, Advanced Engineering Materials Vol. 2 (2000) p.327.

Google Scholar

[12] F. Reischer, E. Pippel, J. Woltersdorf, S. Stöckel and G. Marx, Materials Chemistry and Physics Vol. 104 (2007) p.83.

DOI: 10.1016/j.matchemphys.2007.02.086

Google Scholar

[13] Z. L. Pei, K. Li, J. Gong, N. L. Shi, E. Elangovan and C. Sun, Journal of Materials Science Vol. 44 (2009) p.4124.

Google Scholar

[14] F. Wu and J. Zhu, Composites Science and Technology Vol. 57 (1997) p.661.

Google Scholar

[15] F. Wu, J. Zhu, K. Ibe and T. Oikawa, Composites Science and Technology Vol. 58 (1998) p.77.

Google Scholar

[16] L. Lefebvre, G. L'Esperance and M. Suery, Journal of Materials Science Vol. 32 (1997) p.3987.

Google Scholar

[17] Y. Tang, Y. Deng, K. Zhang, L. Liu, Y. Wu and W. Hu, Ceramics International Vol. 34 (2008) p.1787.

Google Scholar

[18] M. Lancin and C. Marhic, Journal of the European Ceramic Society Vol. 20 (2000) p.1493.

Google Scholar