Surface-Specific Catalytic Activity of Carbon Nanotube Encapsulated with Metal-Oxide Clusters

Article Preview

Abstract:

It is first attempted to demonstrate the catalytic efficiency and structure-sensitivity reactions on the surface of carbon nanotube (CNT) encapsulated with metal oxide particle. The results shows that the encapsulated nanoparticle CuO activate the outer orbits of CNT, and hence the surface of CuO@CNT is chemically active for hydroxyl radical generation. The results obtained from DFT calculation and experiments verified the highly active of CuO@CNT catalysts for the generation of hydroxyl radicals, and the structure-sensitivity for the oxidation of dichlorophenol. This suggests a novel strategy to design well-defined interfaces, controlling the structure-sensitivity reaction, can hence markedly improve the performance of catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-117

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. S. Taylor, Proc. R. Soc. 1925, A108, 105; b) J. H. Sinfelt, Adv. Catal. 1973, 23, 91; c) J. K. A. Clarke, J. J. Rooney, Adv. Catal. 25, 1976, 125; d) C. O. Bennett, M. Che, J. Catal. 1989, 120, 293.

Google Scholar

[2] Ilkeun Lee1, Françoise Delbecq2, Ricardo Morales1, Manuel A. Albiter1 and Francisco Zaera1, Angew. Chem. Int. Edit. 2009. DOI: 10. 1002/anie. 200902800; b) G. A. Somorjai, N. Materer, Top. Catal. 1994, 1, 215; c) G. Ertl, Catal. Rev. Sci. Eng. 1980, 21, 201.

Google Scholar

[3] David Loffreda, Fran_oise Delbecq, Fabienne Vign, and Philippe Sautet, Angew. Chem. Int. Edit. 2009. DOI: 10. 1002/anie. 200902800; b) Hui-Fang Wang and Zhi-Pan Liu, J. AM. CHEM. SOC. 2008, 130, 10996.

Google Scholar

[4] Janzen, E. G.; Blackburn, B. J. J. Am. Chem. Soc. 1969, 91, 4481.

Google Scholar

[5] Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048; b) Perdew J. P.; Wang, Y. Phys Rev B 1992, 45, 13244.

Google Scholar

[6] Kresse G.; Hafner, J. Phys. Rev. B 1993, 47, 558.

Google Scholar

[7] Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.

Google Scholar

[8] Kresse, G.; Furthmüller, J. Comput. Mat. Sci. 1996, 6, 15.

Google Scholar

[9] Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comput. Mater. Sci. 2003, 28, 250.

Google Scholar

[10] Li, W.; Gibbs, G. V.; Ted Oyama, S. J. Am. Chem. Soc. 1998, 120, 9041–9046.

Google Scholar

[11] Somiya, I. Proceedings of 13th Ozone World Congress; Kyoto, 1997; Vol. 1, 493.

Google Scholar

[12] Utsumi, H.; Hakoda, M.; Shimbara, S.; Nagaoka, H.; Chung, Y. H.; Hamada, A. Water Sci. Technol. 1994, 30, 91–99.

DOI: 10.2166/wst.1994.0451

Google Scholar