Modal Modification of Damped Asymmetric Systems without Using the Left Eigenvectors

Article Preview

Abstract:

This study focuses on the prediction of complex eigenpairs of modified asymmetric systems. A method, which combines the reduced basis and the projection technique, is presented to predict the eigenpairs of modified asymmetric systems. The reduced basis obtained using the homotopy perturbation technique only requires the eigensolution of interest such that the modal truncation problem can be avoided. More importantly, the method can be carried out without using the left eigenvectors. The accuracy of the reduced basis approximation can be improved by introducing the projection technique. A rotor dynamic system is used to illustrate the capacity of predicting the changes of eigensolutions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-335

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.H. Chen, X.W. Yang, Extended Kirsch combined method for eigenvalue reanalysis, AIAA J. 38 (2000) 927-930.

DOI: 10.2514/3.14497

Google Scholar

[2] H. -P. Chen, Efficient methods for determining modal parameters of dynamic structures with large modifications, J. Sound Vib. 298 (2006) 462-470.

DOI: 10.1016/j.jsv.2006.06.002

Google Scholar

[3] F. Massa, T. Tison, B. Lallemand, O. Cazier, Structural modal reanalysis methods using homotopy perturbation and projection techniques, Comput. Methods Appl. Mech. Eng. 200 (2011) 2971-2982.

DOI: 10.1016/j.cma.2011.06.016

Google Scholar

[4] L. Ma, S.H. Chen, G.W. Meng, Combined approximation for reanalysis of complex eigenvalues, Computers & Structures, 87 (2009) 502-506.

DOI: 10.1016/j.compstruc.2009.01.009

Google Scholar

[5] L. Li, Y.J. Hu, X.L. Wang, A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues, Mech. Syst. Signal Process. 30 (2012) 61-77.

DOI: 10.1016/j.ymssp.2012.01.008

Google Scholar

[6] L. Li, Y.J. Hu, X.L. Wang, L. Ling, Eigensensitivity analysis for asymmetric nonviscous systems, AIAA J. 51 (2013) 738-741.

DOI: 10.2514/1.j051931

Google Scholar

[7] L. Li, Y.J. Hu, X.L. Wang, Design sensitivity and Hessian matrix of generalized eigenproblems, Mech. Syst. Signal Process. 43 (2014) 272-294.

DOI: 10.1016/j.ymssp.2013.09.007

Google Scholar

[8] J. -H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng. 178 (1999) 257-262.

Google Scholar

[9] L. Li, Y.J. Hu, X.L. Wang, L. Ling, Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues, Finite Elem. Anal. Des. 72 (2013) 21-34.

DOI: 10.1016/j.finel.2013.04.006

Google Scholar