Parameter Design of LS-SVM Based on QPSO and its Application to Node Localization

Article Preview

Abstract:

Regularization parameter and kernel parameters play a crucial role on the accuracy and rapidity of the least squares support vector machine (LS-SVM) algorithm. Existing methods of tuning the parameters for LS-SVM have some disadvantages, such as difficulty of getting global optimum and poor convergent speed. In this work, we develop the parameter design of LS-SVM using quantum particle swarm optimization (QPSO) and apply the designed LS-SVM into node localization. According to the initial values, the optimal parameter values are obtained using the leave-10-out cross validation method. Simulation results show that the proposed method is compared to the coupling simulated annealing (CSA) LS-SVM and the improved particle swarm optimization (IPSO) LS-SVM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

542-545

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.W. Wei, Y. Yong, Lightweight Location Verification Algorithms for Wireless Sensor Networks, IEEE Transactions on Parallel and Distributed Systems. 24 (2013) 938-950.

DOI: 10.1109/tpds.2012.42

Google Scholar

[2] G.L. Sun, W. Guo, Robust Mobile Geo-Location Algorithm Based on LS-SVM, IEEE Transactions on Vehicular Technology. 54 (2005) 1037-1041.

DOI: 10.1109/tvt.2005.844676

Google Scholar

[3] J.A.K. Suykens, T.V. Gestel, J.D. Brabanter, B.D. Moor, J. Vandewalle, Least Squares Support Vector Machine, World Scientific, Hong Kong, (1999).

DOI: 10.1142/5089

Google Scholar

[4] V. Cherkassky, Y. Ma, Practical Selection of SVM Parameters and Noise Estimation for SVM Regression, Neural Networks. 17 (2004) 113-126.

DOI: 10.1016/s0893-6080(03)00169-2

Google Scholar

[5] X.C. Guo, Y.C. Liang, C.G. Wu, C.Y. Wang, PSO-Based Hyper-Parameters Selection for LS-SVM Classifiers, in: I. King, J. Wang, L.W. Chan, D.L. Wang(Eds), Neural Information Processing, Springer Berlin Heidelberg, Berlin, 2006, pp.1138-1147.

DOI: 10.1007/11893257_124

Google Scholar

[6] L.C. Zhou, H.Z. Yang, C. b. Liu, QPSO-Based Hyper-Parameters Selection for LS-SVM Regression, Fourth International Conference on Natural Computation. 2 (2008) 130-133.

DOI: 10.1109/icnc.2008.410

Google Scholar

[7] S. Xavier-de-Souza, J.A.K. Suykens, J. Vandewalle, D. Bolle, Coupled Simulated Annealing, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 40 (2010) 320-335.

DOI: 10.1109/tsmcb.2009.2020435

Google Scholar

[8] K. D Brabanter, P. Karsmakers, F. Ojeda, C. Alzate, J. D Brabanter, K. Pelckmans, B. D Moor, J. Vandewalle, J.A.K. Suykens, LS-SVMlab Toolbox User's Guide Version 1. 8, Heverlee: Department of Electrical Engineering of Katholieke Universiteit Leuven, (2011).

DOI: 10.3182/20090706-3-fr-2004.00137

Google Scholar

[9] J. Sun, W.B. Xu, B. Feng, A Global Search Strategy of Quantum Behaved Particle Swarm Optimization, Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. (2004) 111-116.

DOI: 10.1109/iccis.2004.1460396

Google Scholar

[10] R. Wu, C. Su, K.W. Xia, Y. Wu, An Approach to WLS-SVM Based on QPSO Algorithm in Anomaly Detection, Proceedings of the 7th World Congress on Intelligent Control and Automation. (2008) 4468-4472.

DOI: 10.1109/wcica.2008.4593642

Google Scholar

[11] W. Fang, J. Sun, Y.R. Ding, X. J Wu, W.B. Xu, A Review of Quantum-Behaved Particle Swarm Optimization, IETE Technical Review. 27 (2007) 336-348.

DOI: 10.4103/0256-4602.64601

Google Scholar