Support Vector Regression on Near-Infrared Spectra Analysis for Moisture Determination in Lignitic Coal Samples

Article Preview

Abstract:

We studied rapid moisture determination in lignitic coal samples using near-infrared (NIR) spectrometry technique. This research applied support vector regression (SVR) and discrete wavelet transform (DWT) to analyze NIR spectra. Firstly, NIR spectra were pre-processed by DWT for fitting and compression. Then, DWT coefficients were used to build support vector regression model. Through parameters optimization, the results show that DWT-SVR can obtain satisfactory performance for moisture determination in lignitic coal samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

964-967

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.W. Mok Daniel and F.T. Chau: Chemom. Intel. Lab Systems. Vol. 82 (2006), p.210.

Google Scholar

[2] J. Trygg and S. Wold: J. Chemom. Vol. 16 (2002), p.119.

Google Scholar

[3] Z. Wu, Z. Xiong: Rock and Mineral Analysis Vol. 27 (2008), p.346.

Google Scholar

[4] X.S. Liu, H.B. Qu and Y.Y. Cheng: Chem. Res. Chinese U. Vol. 21 (2005), p.36.

Google Scholar

[5] K.W. Mok Daniel and F.T. Chau: Chemom. Intel. Lab Systems. Vol. 82 (2006), p.210.

Google Scholar

[6] I. Ben-Gera and K.H. Norris: J. Food Sci. Vol. 33 (1968), p.64.

Google Scholar

[7] M.T. Bona and J.M. Andrés: Talanta Vol. 72 (2007), p.1423.

Google Scholar

[8] S. Wang, X. Feng, J. Zhou and X. Wang: Advanced Materials Research Vol. 236-238 (2011), p.799.

Google Scholar

[9] Y. Wang, G. Shi, X. Zhong and D. Wang: Applied Mechanics and Materials Vol. 80-81 (2011), pp.279-283.

Google Scholar

[10] D.W. Kim, J.M. Lee and J.S. Kim: Korean J. Chem. Eng. Vol. 26 (2009), p.489.

Google Scholar

[11] Y. Wang, D. Wang, H. Xin, X. Zhong and G. Shi: R. Chen (Ed. ) ICICIS 2011, Part Ⅰ CCIS Vol. 134 (2011), p.348.

Google Scholar

[12] X. Shao and W. Cai: Rev. Anal. Chem. Vol. 17 (1998), p.235.

Google Scholar

[13] X. Shao, A.K.M. Leung and F.T. Chau: Acc. Chem. Res. Vol. 36 (2003), p.276.

Google Scholar

[14] V. Vapnik: The Natures of Statistical Learning Theory (Springer-Verlag, USA 1995).

Google Scholar

[15] B. Schölkopf, C. Burges and A. Smola: Support Vector Learning 1999, p.25.

Google Scholar

[16] J. A. K. Suykens and J. Vandewalle: Neur. Proc. Let. Vol. 9 (1999), p.293.

Google Scholar

[17] H. Chang, A. Li, H. Wang and H. Tan: Coal Quality Techno. 2004, p.50.

Google Scholar

[18] R.W. Kennard and L.A. Stone: Technometrics Vol. 11 (1969), p.137.

Google Scholar

[19] O.Y. Rodionova and A.L. Pomerantsev: J. Chemom. Vol. 22 (2008), p.674.

Google Scholar