A Competitive Model Reaction for the Ribosomal Peptide Bond Formation Catalyzed by Peptidyl Transferase

Article Preview

Abstract:

In this work, a series of theoretical methods were employed to investigate the reaction mechanisms of ribosomal peptide bond formation catalyzed by peptidyl transferase. For the studies described in this paper, reaction pathways and free energy barriers for the model reaction of the peptide bond synthesis were studied by performing Ab initio calculation. Two self-consistent reaction field (SCRF) methods were used to calculate of the whole reaction pathway. These results show that the present theoretical reaction mechanism is a potential and competitive one for the reaction modeling of the ribosomal peptide synthesis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-20

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ban, N.; Nissen, P.; Hansen, J.; Moore, P. B.; Steitz, T. Science Vol. 289(2000), p.905.

Google Scholar

[2] Nissen, P.; Hansen, J.; Ban, N.; Moore, P. B.; Steitz, T. A. Science Vol. 289(2000), p.920.

Google Scholar

[3] Muth, G. W.; Ortoleva-Donnelly, L.; Strobel, S. A. Science Vol. 289(2000), p.947.

Google Scholar

[4] Dimas, S.; Kenneth, M. M.; Jr. J. Am. Chem. Soc. Vol. 123(2001), p.7687.

Google Scholar

[5] Polacek, N.; Gaynor, M.; Yassin, A.; Mankin, A. S. Nature Vol. 411(2001), p.498.

Google Scholar

[6] Hehre, W.; Radom, L.; Pople, J. A.; Schleyer, P. V. R. Ab initio Molecular Orbital Theory; John Wiley & Sons Inc.: New York, (1986).

DOI: 10.1002/jcc.540070314

Google Scholar

[7] R. G. Par and W. Yang, Density-functional theory of atoms and molecules, Oxford Univ. Press: Oxford, (1989).

Google Scholar

[8] S. H. Vosko, L. Wilk and M. Nusair, Canadian J. Phys. Vol. 58(1980), p.1200.

Google Scholar

[9] B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. Vol. 157(1989), p.200.

Google Scholar

[10] S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys. Vol. 55(1981), p.117.

Google Scholar

[11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).

Google Scholar