Generalized Projective Synchronization for a Class of Continuous Chaotic Systems

Article Preview

Abstract:

In this paper, a generalized projective synchronization (GPS) scheme for a class of continuous chaotic systems is investigated by using only one sate variable and its time derivatives. The construction method of response system is proposed. The mathematical proof of the GPS scheme is provided. The synchronization technique is simple and theoretically rigorous. Finally, the corresponding numerical simulation results demonstrate the effectiveness of the proposed schemes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

258-261

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.M. Pecora, T.L. Carroll: Phys. Rev. Lett. Vol. 64(1990), p.821.

Google Scholar

[2] T.L. Carroll, L.M. Pecora: IEEE Trans. Circuits Syst. 38(1991), p.453.

Google Scholar

[3] A.N. Miliou, I.P. Antoniades, S.G. Stavrinides: Nonlinear Anal. Vol. 8(2007), p.1003.

Google Scholar

[4] C. Aguirre, D. Campos, P. Pascual, E. Serrano: Neurocomputing Vol. (69)2006, p.1116.

Google Scholar

[5] P. Zhou, X. F. Cheng, N.Y. Zhang: Chinese Physics Vol. 17 (2008), p.3252.

Google Scholar

[6] P. Zhou, L. J. Wei, X.F. Cheng: Chinese Physics B Vol. 18 (2009), p.2674.

Google Scholar

[7] P. Zhou, Y.X. Cao, X.F. Cheng: Chinese Physics B Vol. 18 (2009), p.1394.

Google Scholar

[8] P. Zhou, L. J. Wei, X.F. Cheng: Acta Physica Sinica Vol. 58 (2009), p.5201.

Google Scholar

[9] P. Zhou, X.H. Luo, H. Y.A. Chen: Acta Physica Sinica Vol. 54(2005), p.5048.

Google Scholar

[10] R. Mainieri, J. Rehacek: Phys. Rev. Lett. Vol. 82(1999), p.3042.

Google Scholar

[11] C.Y. Chee, D.L. Xu: Chaos, Solitons & Fractals Vol. 23(2005), p.1063.

Google Scholar

[12] X.Y. Wang, Y.J. He: Physics Letters A Vol. 372(2008), p.435.

Google Scholar

[13] X.S. Yang: Physics Letters A Vol. 260 (1999), p.340.

Google Scholar

[14] X.S. Yang: International Journal of Bifurcation and Chaos Vol. (12)2002, p.1159.

Google Scholar

[15] J. Lu, G. Chen, S. Zhang: International Journal of Bifurcation and Chaos Vol. (12) 2002, p.1001.

Google Scholar

[16] C.X. Liu, T. Liu, K. Liu and L. Liu: Chaos, Solitons & Fractals Vol. (22)2004, p.1031.

Google Scholar